Strange Symmetries #14: The Tooth About Baryonyx

Almost all toothed theropod dinosaurs had exactly four teeth on each of their premaxillary bones, the paired bones at the very tip of the upper snout.

A diagram of the various bones in the skull of Spinosaurus.
Spinosaurus skull by AS | Public domain

The semi-aquatic spinosaurids were an unusual exception to this with six or seven teeth per premaxilla – and one particular member of this lineage seems to have been just a little bit weirder.

Baryonyx walkeri lived during the early Cretaceous, around 130-125 million years ago, in what is now southeast England. About 9m long (~30′), it had distinctive enlarged curving claws on the first fingers of its hands, along with a long narrow snout with a “rosette” at the tip followed by a notch (a shape convergent with the jaws of modern pike conger eels).

And that premaxillary rosette had a strangely asymmetrical arrangement of teeth.

A closer view of the lineart for Baryonyx's premaxillary rosette. The six left teeth are indicated in pink, and the seven right teeth in dark green.

The left side had six teeth, and the right side had seven.

Why? We don’t know!

Baryonyx skull material is rare and fragmentary, so it’s unclear if this was actually a characteristic feature of the species or if the known asymmetric rosette just represents an unusual individual.

It Came From The Wastebasket #07: Carnosaur Carnage

Carnosauria was originally named in the 1920s as a grouping for all of the large-bodied theropod dinosaurs known at the time.

For much of the 20th century it was used as a general wastebasket taxon collecting together all big carnivorous forms – including allosaurids, carcharodontosaurids, megalosaurids, spinosaurids, ceratosaurids, abelisauroids, and tyrannosaurids – and for a while it even included a species that later turned out to be closer related to crocodiles than to dinosaurs.

An illustration showing four different carnosaurs: Asfaltovenator, Torvosaurus, Giganotosaurus, and Baryonyx. They're all bipedal carnivorous dinosaurs with small three-clawed arms, bird-like legs, and long counterbalancing tails, but they vary in size, coloration, and most notably head shape. Asfaltovenator and Giganotosaurus have fairly typical boxy theropod heads, while Torvosaurus has a longer snout and Baryonyx has slender crocodile-like jaws.
From left to right: Asfaltovenator vialidadi, Torvosaurus tanneri, Giganotosaurus carolinii, & Baryonyx walkeri

But then cladistic analysis in the 1980s and 1990s revealed that some of these theropods weren’t actually closely related at all. Carnosaurs weren’t a natural lineage but instead were highly polyphyletic, with the physical similarities between them seeming to be more due to convergent evolution than direct shared ancestry.

Some carnosaurs were split off and reclassified as more “primitive” types of theropod, while the tyrannosaurs were placed much closer to birds with the coelurosaurs. The remaining “carnosaurs” were just the allosaurids, carcharodontosaurs, and their closest relatives, and some paleontologists now prefer to use the name Allosauroidea for this group to distance it from the previous wastebasket mess.

…But Carnosauria might not be done just yet.

A screenshot from "Phineas and Ferb", with the two main characters in a room lit up by an offscreen disco ball, with one grabbing the arm of the other. Text below them reads "Dude, we're getting the band back together!" Both of their heads have been photoshopped into those of Megalosaurus and Asfaltovenator.

The discovery of Asfaltovenator in 2019 complicated matters once again, with a mixture of anatomical features linking it to both the allosauroids and the megalosauroids (megalosaurids, spinosaurids, and their relatives) – suggesting that these two groups might actually have been closely related to each other in a single lineage after all.

This would potentially return Carnosauria back to something surprisingly close to its original definition, with the various megalosauroids now forming an evolutionary grade leading to the allosauroids.