Around 11 million years ago, during the late Miocene, much of what is now northern Honshu in Japan was submerged under fairly deep ocean waters. This offshore environment was inhabited by a variety of ancient sea-going tetrapods such as turtles, desmostylians, seal-like allodesmines, archaic baleen whales, and early oceanic dolphins… and also one very unexpected bird.

Meet the flightless marine swan.

Annakacygna hajimei, also known as the Annaka short-winged swan, was the same size as a modern black swan at about 1.2m long (~4′), but had a combination of features unlike any of of its living close relatives. Its head was proportionally large, and it had a long spoon-shaped bill like a shoveler duck, lined with comb-like structures for filter-feeding on plankton. It also had widened hips that would have helped keep it stable floating in rough waters, its tail was highly mobile and muscular, and its feet resembled those of diving birds like loons.

With thickened heavy bones and shortened forearms it was clearly completely unable to fly, but its reduced wings appear to have been highly specialized rather than just vestigial. Its shoulders were extra flexible while its wrists had a more limited range of motion, allowing it to fold its wings into a distinctive half-raised position similar to modern mute swans.

It probably used its wings and tail to perform elaborate “busking” visual displays, and also to carry and protect its young on its back while out at sea – basically making itself into a living swan boat.


Cimolestans were one of the major mammal lineages that survived through the K-Pg mass extinction 66 million years ago. Closely related to early placentals, they had a burst of diversification during the first half of the Cenozoic and rapidly evolved into a wide range of specialized forms – some uniquely weird, and others convergently resembling more familiar modern animals like squirrels, bears, ground sloths, and hippos.

And one group known as the pantolestids were incredibly otter-like.

(Because synapsids love them some lutrinization.)

Palaeosinopa didelphoides here lived during the mid-Eocene, about 52 million years ago, in what is now the Mountain West region of the USA. It was similar in size to a small otter, about 1m long (3’3″), and had a streamlined body with a well-muscled neck, short powerful forelimbs, slightly longer hindlimbs, and a very long tail.

Inhabiting a subtropical lake ecosystem, it probably swam using both hindlimb paddling and otter-like tail undulations. Its strong jaws and teeth suggest it was specialized for crunching hard shellfish prey, but so far preserved gut contents have only shown fish bones and scales. Fairly large claws indicate it was also able to dig out burrows similarly to modern otters and beavers.

Although pantolestids were never particularly common animals they were quite widespread, expanding their range from their evolutionary origins in North America across to Europe and eventually into Asia. A cooling and drying climate at the end of the Eocene seems to have driven most of the group into extinction alongside all their other cimolestan relatives – but a few of the Asian species clung on slightly longer as the very last of their kind, with the last known fossils dating to about 28 million years ago in the early Oligocene.


Radiodonts were early arthropods with specialized frontal appendages, disc-like mouths, complex compound eyes, and swimming flaps along the sides of their bodies. Once considered to be bizarre “weird wonders” of the Cambrian Explosion that represented a failed evolutionary experiment, we now know that they were actually a highly diverse and successful lineage that lasted for at least 120 million years.

While some radiodonts were the largest animals of their time periods, Stanleycaris hirpex here was one of the smallest known members of the group – although at around 10cm long (~4″) it was still respectably big compared to most other Cambrian animals.

Discovered in the Canadian Burgess Shale deposits (~508 million years ago), it was originally known only from isolated frontal appendages and mouthparts, and had been assumed to be a fairly typical member of the hurdiid family. But the recent discovery of over 200 new fossils, including some exceptionally well-preserved full body specimens, has catapulted it directly from being poorly-known into now being one of the most completely known of all radiodonts.

And it had a very big surprise for us, right in the middle of its face.

It turns out that Stanleycaris had a huge third eye, unlike anything ever seen in a radiodont before. A large unpaired eye was also part of the five-eyed arrangement in opabiniids and Kylinxia, and finding a similar example in radiodonts too raises the possibility that this sort of well-developed “median eye” may have been more widespread in early arthropods than previously thought.

Along with the third eye, some of the Stanleycaris specimens preserve fine internal details of its nervous system and show that its brain was made up of two segments instead of the three seen in modern arthropods. It also had gills positioned on its underside, unlike most other radiodonts which had them on their backs.


The synapsids were an incredibly successful and diverse group during the Permian period, but after the devastating “Great Dying” mass extinction event 252 million years ago only three lineages survived into the Triassic – the cynodonts (close relatives and ancestors of modern mammals), the dicynodonts (beaked tusked weirdos who briefly took over the world), and the therocephalians.

Therocephalians were close relatives of cynodonts, and convergently evolved several very mammal-like anatomical features in their skulls, teeth, and limbs. But unlike their cousins this lineage never fully recovered in the Triassic, and they ultimately disappeared completely around 242 million years ago.

Ericiolacerta parva was one of these short-lived Mesozoic therocephalians, known from the early Triassic (~252-247 million years ago) of South Africa and Antarctica, in regions that were connected at the time as part of the supercontinent of Pangaea. It was a fairly small animal, about 20cm long (~8″), with small sharp teeth that indicate it mainly fed on insects, and semi-opposable thumbs and inner toes that suggest it was also a capable climber.

Holes in the bones of its snout would have carried numerous nerves and blood vessels, which may be evidence of sensitive fleshy lips and possibly whiskers. And while there’s no direct evidence of fur in therocephalians, they do appear to have been active warm-blooded animals – and possible fossilized synapsid hair from the Permian period suggests fuzziness might have been ancestral to all of the “protomammal” lineages that survived into the Triassic.