The docodonts were a group of mammaliaformes (close relatives of the earliest true mammals) which lived across North America, Europe, and Asia from the Middle Jurassic to the Early Cretaceous. Originally only known from teeth and jaw fragments they were traditionally thought to be fairly generic shrew-like insectivores, but more recent discoveries of better fossils have revealed they were actually much more diverse, occupying ecological niches ranging from squirrel-like tree-climbers to mole-like diggers to beaver-otter-like swimmers.

Most of the more complete fossil material of these animals comes from the mid-Jurassic of China, but one species from elsewhere is also known from a partial skeleton.

Haldanodon exspectatus here lived in central Portugal during the Late Jurassic, about 155 million years ago. Around 15-20cm long (6-8″), it had small eyes and short chunky well-muscled limbs with the front paws adapted for digging. Since it inhabited a very swampy environment it probably wasn’t a pure mole-like burrower – extensive tunnels would have constantly flooded – but it may have instead been a similar sort of semi-aquatic animal to modern platypuses and desmans, foraging for invertebrates in the water and excavating burrows in the banks.

Roughened areas of bone on its snout may also have supported a patch of tough keratinous skin, which would have helped protect its face while digging.

Leithia melitensis

During the mid-Pleistocene, between about 900,000 and 500,000 years ago, the Mediterranean islands of Malta and Sicily were connected and shared a unique ecosystem made of up a mix of weird endemic species. While the tiny elephants and giant swans are probably the most famous, there were also several other unusual animals such as dwarf hippos, huge owls, large cranes, giant tortoises, and big lizards.

And also massive rodents.

Leithia melitensis, the Maltese giant dormouse, was descended from garden dormice, but thanks to the lack of large land predators on Siculo-Malta it was able to evolve a much much larger body size – about 60-70cm long (2′-2’4″), almost the size of a cat.

Recent reconstructions of its skull have shown it was also proportioned differently compared to its tiny modern relatives, more chunkily built with a shorter and wider snout, bigger teeth, and thicker cheekbones that must have anchored some incredibly powerful muscles for chewing. It may have been eating a much more herbivorous diet than other dormice, processing a lot of tough fibrous vegetation.

Eons Roundup 7

It’s another PBS Eons commission roundup day!

The metatherian mammals Pucadelphysand Khasia, and lineart of the sparassodont Paraborhyaena, from “How South America Made the Marsupials”

The dyrosaurid crocodyliform Acherontisuchus and the bothremydid turtle Puentemys, from “How a Hot Planet Created the World’s Biggest Snake”

The early penguin Waimanu and the giant penguin Anthropornis, from “When Penguins Went From The Sky To The Sea”


Back during the early Eocene, around 50 million years ago, global temperatures were much warmer than today, and in North America tropical and subtropical rainforests extended as far as Alaska.

And one of the most abundant animals in these balmy ecosystems was a small mammal called Hyopsodus, an early type of ungulate that was probably part of the perissodactyl lineage, closely related to the ancestors of modern horses.

Many different species of this genus have been discovered, ranging from rat-sized to cat-sized. Remains of Hyopsodus account for up to 30% of fossils in some locations, with tens of thousands of specimens known – although most of them are isolated teeth and jaw fragments.

(The illustration here depicts Hyopsodus wortmani, a 30cm/12″ long species which lived about 50-46 million years ago across the Western and Southern USA.)

More substantial skeletal remains of this little mammal are very rare, and initially seemed to show a long weasel-like body that resulted in Hyopsodus being given the nickname of “tube-sheep”. But more recent specimens have given us a better idea of its proportions, and it wasn’t really tubular at all. Instead it was probably built more like a cavy or a hyrax, with a more chunky body and a spine held more strongly curved.

Its teeth suggest it was a generalist omnivore, probably mainly eating a mixture of vegetation, fruits, seeds, insects, and occasionally smaller animals, and while its limbs were proportionally short it was likely still quite an agile fast-moving animal. It also appears to have had some ability to dig, and may have sheltered in burrows similarly to modern groundhogs.

But one of the most surprising things about the “tube-sheep” comes from studies of its braincase via CT scans of its skull. Its brain was unusually large for its size, and had enlarged areas associated with good senses of smell and hearing – and notably one sound-processing region (known as the inferior colliculus) was developed to a degree similar to those seen in echolocating animals.

Analysis of its ear bones suggest it wasn’t highly specialized for echolocation like bats, but may have still been capable of a more basic shrew-like version, using it for close-range navigation.


In the early Cenozoic mammals were rapidly diversifying and evolving. And while it was the placental mammals that would end up being the most successful across much of the world, they weren’t the first mammal lineage to take advantage of all the ecological niches left vacant in the wake of the end-Cretaceous mass extinction.

The cimolestans were a group of non-placental eutherians – mammals closer related to modern placentals than to marsupials – that very quickly evolved into a wide range of niches during the Paleocene and Eocene, becoming some of the largest mammals of their time and producing forms as varied as squirrel-like, otter-like, ground sloth-like, and hippo-like.

But some of the weirdest of them all were the taeniodonts. Originating back in the late Cretaceous, these herbivorous cimolestans were characterized by short blunt snouts with large front teeth, and limbs with long claws.

Stylinodon mirus here was one of the largest taeniodonts, standing around 70cm tall at the shoulder (2’4″), and was also one of the last of its kind, living during the mid-Eocene about 50-40 million years ago in western North America.

It took the specializations of its lineage to the extreme, with a odd-looking boxy skull with enormous chisel-like ever-growing front teeth similar to those of a rodent – but derived from its canine teeth rather than its incisors.

Stylinodon skull | photograph by Yinan Chen | CC0

Its powerful front limbs and large claws were clearly specialized for digging, and for a long time it was thought to be obvious what its diet was – clearly it must have been unearthing roots and tubers from underground, right?

However, closer looks at its teeth raise a problem with that interpretation. That sort of food source should have left numerous telltale marks on the chewing surfaces of its teeth, scratches and gouges and abrasions from dirt and grit mixed in with the roots being eaten.

Yet Stylinodon barely shows any of those wear marks, suggesting that it rarely actually ate those food items. Its tooth surfaces were instead worn very smooth, indicating that it was eating something particularly tough that was constantly “polishing” them as it chewed — but what exactly that food source was is still unknown.

It may also have used its forelimbs to help pull down branches down towards its mouth, stripping off leaves and bark similar to ground sloths, chalicotheres, and therizinosaurs – but it probably did mostly use those big claws to actually dig, just perhaps mainly to construct large burrows rather than to find food.


Since the last couple of weeks have featured marine mammals, let’s have one more! This time not a cetacean but a member of the other group of fully aquatic mammals still alive today: the sirenians.

Although commonly known as “sea-cows” due to their herbivorous grazing habits, sirenians’ closest living relatives are actually modern elephants. They’re thought to have originated in Africa over 50 million years ago, starting off as pig-like or hippo-like semi-aquatic animals — but they must have been good swimmers capable of crossing oceans very early in their evolutionary history, since some of the earliest known sirenian fossils actually come from the other side of the Atlantic on the Caribbean island of Jamaica.

Sobrarbesiren cardieli here extends some of our knowledge of early four-legged sirenians to Europe, dating to the mid-Eocene about 42 million years ago. Hundreds of bones were found in Northeastern Spain, representing at least six different individuals and giving us a fairly complete idea of this species’ anatomy.

It was smaller than modern sea-cows, reaching about 2m long (6’6″), and seems to represent a transitional point between the semi-aquatic ancestral sirenians and fully aquatic later forms. It had a head very similar to its modern relatives, and probably a tail fin, but also still retained small functional hind limbs.

It was initially thought to still be somewhat semi-aquatic and capable of quadrupedal locomotion on land, but a later analysis of its hind limb bones suggests that it may actually have been much more aquatic than that. Its hind legs had a wide range of motion and were probably used for otter-like swimming, undulating the body while paddling, but might not have been capable of supporting its weight on land. So if Sobrarbesiren did still haul out of the water, it may have had to move more like a seal.


Last week’s weird-snouted Furcacetus wasn’t the only recently-discovered ancient platanistoid dolphin that deserves some attention.

Ensidelphis riveroi was described in the same paper, and also lived in the coastal waters around Peru during the early Miocene, about 19 million years ago. It was a little less closely related to its modern river-dwelling cousins than Furcacetus, and was slightly larger, estimated to have measured about 3m long (9’10”).

But what made it weird was its incredibly long snout, lined with around 256 tiny sharp teeth, which also curved markedly to the right side along its 55cm (1’10”) length.

Expectation vs reality

With only one known skull of Ensidelphis it’s impossible to tell if this was a natural condition for the species or if it was some sort of anomalous individual. It doesn’t seem to be a deformation of the fossil, at least.

Similar unusual right-side bending has been seen in the skulls of a few individuals of modern South Asian river dolphins, franciscanas, and Amazon river dolphins, possibly caused by injuries at a young age being exaggerated as the animals grew. However, many other platanistoid dolphins (especially squalodelphinids) are known to have naturally had similar bends in their snouts – but always to the opposite side, curving to the left instead of the right.

But naturally bent or not, what might Ensidelphis have been doing with that incredibly lengthy snoot?

Its long slender jaws would have had a fairly weak bite, so it probably wasn’t able to catch large prey, and it had a very flexible neck. Possibly it swam along near the seafloor using its snout to probe and sweep around in the sediment for buried small prey.

Modern South Asian river dolphins swim along on their sides while doing this – almost always on their right sides, interestingly enough – and if Ensidelphis did the same sort of thing then a snout bent in that direction might have been an advantage.


The two living subspecies of the South Asian river dolphin are the last surviving members of a lineage known as the Platanistoidea, an early evolutionary branch of the toothed whales. This group was once much more diverse and widespread than their modern representatives, found in oceanic habitats around the world from the Oligocene to the mid-Miocene.

Many of them had forward-pointing protruding teeth at the tips of their snouts, resembling those of some plesiosaurs or pterosaurs, suggesting they were a convergent adaptation used for snagging hold of slippery soft-bodied aquatic prey.

Furcacetus flexirostrum is one the newest additions to this group, named and described in late March 2020. It lived in Pacific coastal waters around Peru during the early Miocene, about 19-18 million years ago, and was about the same size as modern South Asian river dolphins at around 2.3m long (7’7″).

And it had a uniquely-shaped snout for a cetacean, curving upwards for most of its length but then turning downwards right at the tip, which along with large forward-pointing teeth gave its jaws a vaguely crocodilian appearance.

A closeup view of the jaws of Furcacetus.

Much like slender-snouted crocodilians and spinosaurids, this arrangement would have allowed Furcacetus to make quick bites at small-fast-moving prey like fish and crustaceans.

Eons Roundup 6

Time for some more recent commissions from PBS Eons!

The hyainailourids Megistotherium osteothastes and Hyainailouros napakensis, from “When Giant Hypercarnivores Prowled Africa

The bear-dogs Daphoenus demilo and Amphicyon giganteus, from “The Forgotten Story of the Beardogs

The early panda Ailuropoda microta, from “The Fuzzy Origins of the Giant Panda

Weird Heads Month #27: The Weirdest Wildebeest

Earlier in this series we saw some ruminants with bizarre-looking headgear, but there was another species in that group that evolved a completely different type of strange head.

Rusingoryx atopocranion was a close relative of modern wildebeest that lived during the late Pleistocene, around 100,000 to 50,000 years ago. Its fossil remains are known from the Kenyan part of Lake Victoria, on Rusinga Island – an area which wasn’t actually an island at the time due to lower lake levels, and was instead part of a hot dry grassland environment.

Standing about 1.2m at the shoulder (~4′), it had an oddly-shaped skull with a pointed snout and a highly domed forehead. But this wasn’t the thick bony dome of a headbutting animal – this structure was narrow and fairly fragile, and had looping nasal passages running through it.

Instead it was something never before seen in any mammal: a bony nasal crest convergently similar to those of hadrosaurid dinosaurs.

Juveniles had less developed crests, developing them as they matured, and one skull that may represent an adult female also has a smaller crest, suggesting that this feature was sexually dimorphic.

Based on just the anatomy of the nasal passages Rusingoryx may have honked at a frequency similar to a vuvuzela, but the added length of its vocal tract could have lowered this pitch even further, closer to infrasound ranges – so more like a tuba! Such low frequencies can travel very long distances and are also below the hearing range of many carnivores, and would have effectively allowed Rusingoryx to shout at each other in “stealth mode”.