Minqaria

For a long time there were no hadrosaurid fossils known from Africa.

This seemed to mainly be due to the limits of the geography of their time. Hadrosaurs evolved and flourished during the late Cretaceous, when Africa was isolated from all the other continents, and they didn’t seem to have ever found their way across the oceanic barriers.

…Until in 2021 a small hadrosaur was discovered in Morocco, a close relative of several European species, showing that some of these dinosaurs did reach northwest Africa just before the end of the Cretaceous – and with no land bridges or nearby island chains to hop along, they must have arrived from Europe via swimming, floating, or rafting directly across several hundred kilometers of deep water.

And now another hadrosaur has just been described from the same time and place.

Minqaria bata lived in Morocco at the very end of the Cretaceous, about 67 million years ago. Only known from a partial skull, its full appearance and body size is unknown, but it probably measured around 3.5m long (~11’6″) – slightly larger than its previously discovered relative, but still very small for a hadrosaur. It might represent a case of insular dwarfism, since at the time Morocco may have been an island isolated from the rest of northwest Africa.

Along with its close relative Ajnabia, and at least one other currently-unnamed larger hadrosaur species, Minqaria seems to be part of a rapid diversification of hadrosaurs following their arrival in Morocco, adapting into new ecological niches in their new habitat where the only other herbivorous dinosaur competition was titanosaurian sauropods, and the only large predators were abelisaurs.

If the K-Pg mass extinction hadn’t happened just a million years later, who knows what sort of weird African hadrosaurs we could have ended up with?

Spectember/Spectober 2023 #09: Things With Wings

(Apologies for the abrupt absence – I’m okay, just having everything break down at once. This is fine.)

So— back to the speculative evolution request list!

TheBigDeepCheatsy requested a “cactus-dwelling/germinating evolution of introduced rosy-faced lovebirds”:

A shaded sketch of a speculative symbiotic relationship between lovebirds and saguaro cactus. The lovebird is shown on the left, a small parrot that looks very similar to modern rosy-faced lovebird except with hints of a more mottled color pattern. The cactus is shown on the right, a large fasciated saguaro with its top fanning out into a wide "crown", with several nest holes dug into it and multiple lovebirds occupying them.

While Agapornis cheatsyi is still quite physically similar to its introduced ancestors, this lovebird has developed a close symbiotic relationship with the cactus Carnegiea ornipolis, a descendant of the modern saguaro.

Naturally fasciated, this cactus grows a splaying fan-like crown which the lovebirds excavate their shallow nest burrows into. Feeding on the cactus’ fruit in early summer, the lovebirds then disperse the seeds via their droppings – a process that significantly improves propagation chances, both due to the birds commonly foraging and defecating around suitable nurse plants and the passage through their gut speeding up germination.


Someone calling themself “LB” asked for some “flying afrotherians”:

A shaded sketch of a speculative flying tenrec. It's a bat-like animal with membranous wings supported by three elongated fingers, and a large shrew-like head with long toothy jaws and an elephant-shrew-like nose.

Elbeitandraka venenifer is a descendant of tree-climbing Malagasy tenrecs that developed gliding membranes – and its lineage is now just about achieving true powered flight.

About 25cm long (~10″), its proportionally short broad wings require it to fly very fast to generate enough lift for its weight. It mostly only actively flies when traveling between roosts and feeding sites (or when escaping from threats), alternating between gliding to save energy and flapping to recover altitude.

It’s an opportunistic omnivore, crawling around in the tree canopy foraging for vegetation, fruits, fungi, invertebrates, and the occasional smaller vertebrate, using its flexible sengi-like nose to probe around in crevices.

Much like modern common tenrecs it’s capable of hibernating for months at a time through periods of scarce food availability. It also accumulates alkaloid toxins in its body from its arthropod prey, advertising its unpalatability to predators with bold contrasting warning coloration on its wing membranes.


And here’s a combination of a couple of anonymous requests for both “flying heterodontosaurs” and “dragons with hind leg wings, a la sharovipteryx”:

A shaded sketch of a speculative flying predatory heterodontosaurid dinosaur, show both on the ground in a quadrupedal posture and in flight. Its hind legs form its main wings, with elongated outer toes supporting large pterosaur-like flight membranes. It also has a hooked beak at the front of fanged jaws, an s-curved neck, a compact fuzzy body, short forelimbs with taloned hands and small stabilization membranes, and a long vaned tail.

Inversodraco rapax is a highly specialized Jurassic descendant of heterodontosaurids that took to climbing and gliding, developing delta-wing-like membranes on their hindlimbs convergently similar to those of the earlier sharovipterygids.

Around 75cm long (~2’6″), it has unusually flexible hip joints for a dinosaur, able to splay its legs out to the sides to deploy wings supported by an elongated outer toe on each foot. Its arms form small forewings for stability, and its long tail ends in a vane of stiffened feathers that aid in steering.

Unlike its herbivorous-to-omnivorous ancestors it’s primarily a carnivore, swooping down onto small prey and grabbing it with its talon-like forelimbs.

Crystal Palace Field Trip Part 2: Walking With Victorian Dinosaurs

[Previously: the Permian and Triassic]

The next part of the Crystal Palace Dinosaur trail depicts the Jurassic and Cretaceous periods. Most of the featured animals here are actually marine reptiles, but a few dinosaur species do make an appearance towards the end of this section.

A photograph of a Crystal Palace ichthyosaur statue, posed hauled out of the water like a seal or crocodile. It's partially obscured by plant growth, and is in a state of slight disrepair – moss and lichen patches cover its sides, and a plant is growing out of a crack on its back. A moorhen can be seen in the water swimming towards it.

Although there are supposed to be three Jurassic ichthyosaur statues here, only the big Temnodontosaurus platyodon could really be seen at the time of my visit. The two smaller Ichthyosaurus communis and Leptonectes tenuirostris were almost entirely hidden by the dense plant growth on the island.

Two photographs of the Crystal Palace ichthyosaurs. On the left the island is clear of foliage and all three can be seen; and on the right is the current overgrown state.
Ichthyosaurs when fully visible vs currently obscured
Left side image by Nick Richards (CC BY SA 2.0)
Two photographs of the large Crystal Palace ichthyosaur, showing closer views of the eye, flipper, and tail fin. Int he background a second ichthyosaur can be seen through the foliage. A moorhen is pecking around near the flipper.
Head, flipper, and tail details of the Temnodontosaurus. A second ichthyosaur is just barely visible in the background.

Ichthyosaurs were already known from some very complete and well-preserved fossils in the 1850s, so a lot of the anatomy here still holds up fairly well even 170 years later. They even have an attempt at a tail fin despite no impressions of such a structure having been discovered yet! Some details are still noticeably wrong compared to modern knowledge, though, such as the unusual amount of shrinkwrapping on the sclerotic rings of the eyes and the bones of the flippers.

An illustration comparing the Crystal Palace depiction of an ichthyosaur with a modern interpretation. The retro version has long toothy jaws, very large eyes, a seal-like body, four scaly-looking flippers, and a small eel-like fin on its tail. The modern version is a much more dolphin-like animal with smaller eyes, smooth triangular flippers, a dorsal fin, and a vertical crescent-shaped tail fin.
Continue reading “Crystal Palace Field Trip Part 2: Walking With Victorian Dinosaurs”

Strange Symmetries #17: Spiky Surprise

Styracosaurus albertensis was a ceratopsid dinosaur living during the late Cretaceous about 75 million years ago, in what is now Alberta, Canada. Around 5m long (~16′), it was one of the most elaborately ornamented horned dinosaurs, with a long nose horn and multiple elongated spikes on its frill.

There was actually quite a lot of variation in the frills of Styracosaurus, with varying numbers of long spikes and extra hook-like projections present on some individuals. But one recently-discovered specimen nicknamed “Hannah” is especially surprising – it had a noticeable amount of asymmetry in its skull. The left and right sides show different numbers and arrangements of spikes, so much so that if the two halves had been discovered separately they might have been identified as belonging to two completely different species.

Frill arrangements are often used to define different ceratopsids, so if this level of individual variation and asymmetry existed in other species, too, then we may need to reevaluate some of them.

Strange Symmetries #11: Step Up To The Plate

Stegosaurs are some of the most popular and recognizable dinosaurs thanks to their unique appearances, with small heads, elaborate back plates, and spiky thagomizer tails.

Closely related to the ankylosaurs, they first appeared in the mid-Jurassic about 170 million years ago. While they lasted until at least the mid-Cretaceous (~100 milion years ago), their heyday was in the latter half of the Jurassic, ranging all across Asia, Europe, Africa, and North America – and the North American species like the eponymous Stegosaurus developed especially elaborate plates in a distinctive asymmetrical pattern, not arranged in pairs like most other stegosaurs but in alternating rows along each side of the midline of their backs.

Hesperosaurus mjosi lived around 156 million years ago during the late Jurassic, in what is now Wyoming and Montana in the Western United States. It was closely related to Stegosaurus but was a little older and a little smaller, about 5-6m long (~16-20′).

Much like its more famous relative its plates seem to have alternated along its back, which may have been an adaptation to maximize visible surface area while minimizing the number of plates, saving on the energy needed to grow such large elaborate ornamentation.

Hesperosaurus might also represent a rare case of possible sexual dimorphism in non-avian dinosaurs, with wider more rounded plates potentially interpreted as belonging to males and taller pointed plates belonging to females.

It Came From The Wastebasket #10: Struggling With Stegoceras

First described and named in the early 1900s, Stegoceras validum was a dog-sized small pachycephalosaur that lived in Alberta, Canada, during the Late Cretaceous (~77-74 million years ago).

Initially just known from its skull domes, it was one of the first pachycephalosaurs to be discovered and was very poorly understood until more complete remains were found in the 1920s. Then it spent a couple of decades being mixed up with Troodon due to similarities in tooth shape, until the discovery of Pachycephalosaurus led to pachycephalosaurs finally being recognized as a distinct group of ornithischian dinosaurs in the 1940s.

An illustration of Stegoceras, an extinct pachycephalosaur. It's a small bipedal dinosaur with tiny arms, bird-like legs, a speculative coat of fluffy protofeathers over most of its body, and a long tapering tail with speculative bristly quills. It has a large bony dome on its forehead, rimmed with short spikes, and a short snout with a stubby beak. It's mainly colored white and grey, with brighter red and yellow markings on its face and red towards the tip of its tail.
Stegoceras validum

For much of the 20th century Stegoceras was treated as a wastebasket taxon for any small-to-mid-sized North American (and one Asian) pachycephalosaur, and multiple different species were named based on what were often rather dubious fragmentary fossils. But towards the start of the 21st century this mess did start getting cleaned up, merging some dubious species into the original Stegoceras validum, and moving others to separate genera like Sphaerotholus, Colepiocephale, Hanssuesia, and Sinocephale.

By the early 2000s just the Canadian Stegoceras validum remained – but then in 2011 the new species Stegoceras novomexicanum was named based on specimens from New Mexico, USA. The validity of this second species has been debated, since the fossils are juveniles and might instead belong to Stegoceras validum or another genus like Sphaerotholus, but if it is some sort of Stegoceras then it significantly re-extends the known geographic range of this little pachycephalosaur.

Spectember 2022 #01: Arboreal Ornithopod

Despite some minor delays, it’s time once again for #Spectember – when I dive back into the big pile of speculative evolution concepts that you all submitted to me in 2020, and try to get through a few more of the backlog.

(…There’s still over 50 of them left. This is going to take a while.)

So today’s concept comes from an anonymous submitter, who requested an arboreal ornithopod dinosaur:

Continue reading “Spectember 2022 #01: Arboreal Ornithopod”

Jakapil

The thyreophorans were heavily armored ornithischian dinosaurs, with their most famous representatives being the stegosaurs and the ankylosaurs. Earlier members of the group were all small bipedal animals covered in rows of prickly osteoderms, and until now these “primitive” forms were known only from the early-to-mid Jurassic, around 200-165 million years ago.

But now the recent discovery of Jakapil kaniukura is suggesting a lineage of early thyreophorans actually survived for much much longer than previously thought – all the way into the Late Cretaceous, about 97-94 million years ago.

Just 1.5m long (5′), Jakapil lived in what is now southern Argentina, in an ancient desert with a braided river system. It was bipedal, with a short beak, small arms, and a body bristling with spiky armor, and its unusually deep lower jaw and heavily worn teeth indicate it fed on rather tough vegetation that required a lot of chewing to process.

It’s currently only known from somewhat fragmentary remains, so reconstructions of its full appearance are rather speculative and there’s already been some dispute about whether Jakapil actually was a thyreophoran. One proposal is that it shared a lot of anatomical features with early ceratopsians instead, which if true would make it an incredibly weird armored ceratopsian, and also the first definitive member of that group from South America. But the ceratopsian-like features could also just be due to convergent evolution – and a Jakapil-like dinosaur might actually help explain the only other known dubious South American “ceratopsian” Notoceratops, and the similarly-disputed Australian Serendipaceratops.

But whatever it was – late-surviving basal thyreophoran, southern armored ceratopsian, or even a previously unknown lineage of ornithishcians entirely new to science – it’s an exciting and unexpected discovery.

Sierraceratops

In the late 1990s a partial skeleton of a ceratopsian was discovered in New Mexico, USA. These remains were initially thought to belong to Torosaurus, but after more of the specimen was recovered in the mid-2010s it became clear the bones actually represented an entirely new species of horned dinosaur – officially named in 2022 as Sierraceratops turneri.

Sierraceratops lived during the Late Cretaceous, around 72 million years ago, in what at the time was the southern region of the island continent of Laramidia. About 4.6m long (~15′), it had fairly short chunky brow horns, long pointed cheek horns, and a relatively large frill.

It was part of a unique lineage of ceratopsians that were endemic to southern Laramidia, with its closest known relatives being Bravoceratops from western Texas and Coahuilaceratops from northern Mexico.

Retro vs Modern #13: Stegosaurus stenops

The first known stegosaur fossils were found in England and South Africa between the 1840s and 1870s, but these dinosaurs weren’t properly recognized as a highly distinctive group until the discovery of Stegosaurus itself in North America during the late 1870s.


1880s

The first Stegosaurus reconstructions were based on fragmentary and disarticulated fossil material, and its life appearance was very poorly understood. Initially it was depicted as a bipedal long-necked animal, with its plates laying flat against its back like a turtle shell, numerous spikes across its back, and more plates running along its tail.


1890s-1970s

Better skeletons of the species Stegosaurus stenops were discovered in the late 1880s, and by the 1890s stegosaur anatomy was becoming clearer. Reconstructions quickly adopted an arch-backed body shape with a tiny head and drooping tail, short semi-sprawling forelimbs and long hindlimbs, and with the plates now properly upright on the back and the spikes at the end of the tail.

Stegosaurus‘ unique appearance rapidly made it one of the most famous and recognizable dinosaurs to the general public. Its comical-seeming tiny head and even tinier brain also unfortunately ended up contributing to the prevailing early 20th century attitude that dinosaurs were sluggish and unintelligent, with the myth that it needed a “second brain” in its hips to control its huge body becoming a popular notion for quite some time.

The exact arrangement of the iconic back plates and tail spikes was uncertain for several decades, with early versions in the 1890s having up to eight tail spikes and a single row of plates. This was then updated in the 1900s to a double row of symmetrical plate pairs, and by the 1920s the standard arrangment had soon become an alternating two-row pattern with the tail spikes reduced to four – a layout that’s still considered correct today.


2020s

In the second half of the 20th century a combination of numerous new stegosaur species from China and the Dinosaur Renaissance began to revise the way Stegosaurus was understood, bringing it into a fully upright posture with its head and tail held high, and recognizing the convergently sauropod-like anatomy of its hands and feet.

But something still wasn’t right.

Compared to other known stegosaurs, Stegosaurus itself was starting to seem… rather weird. Its short neck, short forelegs, giant plates, sloping back and high rump were much more exaggeratedly proportioned than any of its relatives.

This was finally resolved in the 2010s when a near-complete specimen nicknamed “Sophie” was thoroughly described – and revealed that Stegosaurus’ proportions had been wrong the whole time. All previous skeletal reconstructions had been composites, put together from remains of multiple individuals that had all been different ages and sizes, and in the process had heavily distorted our idea of what this animal actually looked like.

Our modern view of Stegosaurus is now a much more typical stegosaur than before. It lived during the Late Jurassic, about 155-145 million years ago, across the Western and South Central United States (with a possible additional occurence in Portugal), alongside several other iconic dinosaurs of the “Jurassic savanna” like Brontosaurus, Diplodocus, and Allosaurus.

It grew up to around 9m long (~30ft), and had a small head with a long narrow snout, with a toothless beak at the front of its jaws and small peg-shaped teeth further back. Bony ossicles lined the underside of its neck, possibly providing chainmail-like protection to its throat, and its skin was covered in tiny pebbly scales interspersed with “rosettes” formed around slightly larger oval scales. Its neck was longer than previously thought, more in line with other stegosaurs, and its torso and hind legs were a bit shorter, making its posture more horizontal and its back less arched.

The actual function of the large back plates is still uncertain. Ideas about them being defensive armor (and speculation about them even being moveable!) have mostly been discounted at this point, since they were actually relatively fragile – although their keratinous covering may have had a fairly sharp edge. Thermoregulation has been a popular explanation for many decades, with blood vessel impressions in the plates being proposed as evidence they were used as “radiators” to prevent overheating like the ears of modern African elephants.

But currently the most likely primary plate function is thought to be visual display, with the large plates increasing the perceived size of Stegosaurus either to intimidate predators and rivals or to impress potential mates. If this was the case then they may have also been strikingly colored and patterned in life.

Meanwhile the “thagomizer” on its tail actually does seem to have been a weapon, with injuries to that area of the body being fairly common, and several Allosaurus fossils have been found with puncture wounds the exact size and shape of Stegosaurus spikes. Articulated specimens have also shown that the tail curved downwards at the tip, holding the thagomizer with the spikes pointing horizontally outwards and backwards.