Spectember/Spectober 2023 #09: Things With Wings

(Apologies for the abrupt absence – I’m okay, just having everything break down at once. This is fine.)

So— back to the speculative evolution request list!

TheBigDeepCheatsy requested a “cactus-dwelling/germinating evolution of introduced rosy-faced lovebirds”:

A shaded sketch of a speculative symbiotic relationship between lovebirds and saguaro cactus. The lovebird is shown on the left, a small parrot that looks very similar to modern rosy-faced lovebird except with hints of a more mottled color pattern. The cactus is shown on the right, a large fasciated saguaro with its top fanning out into a wide "crown", with several nest holes dug into it and multiple lovebirds occupying them.

While Agapornis cheatsyi is still quite physically similar to its introduced ancestors, this lovebird has developed a close symbiotic relationship with the cactus Carnegiea ornipolis, a descendant of the modern saguaro.

Naturally fasciated, this cactus grows a splaying fan-like crown which the lovebirds excavate their shallow nest burrows into. Feeding on the cactus’ fruit in early summer, the lovebirds then disperse the seeds via their droppings – a process that significantly improves propagation chances, both due to the birds commonly foraging and defecating around suitable nurse plants and the passage through their gut speeding up germination.

Someone calling themself “LB” asked for some “flying afrotherians”:

A shaded sketch of a speculative flying tenrec. It's a bat-like animal with membranous wings supported by three elongated fingers, and a large shrew-like head with long toothy jaws and an elephant-shrew-like nose.

Elbeitandraka venenifer is a descendant of tree-climbing Malagasy tenrecs that developed gliding membranes – and its lineage is now just about achieving true powered flight.

About 25cm long (~10″), its proportionally short broad wings require it to fly very fast to generate enough lift for its weight. It mostly only actively flies when traveling between roosts and feeding sites (or when escaping from threats), alternating between gliding to save energy and flapping to recover altitude.

It’s an opportunistic omnivore, crawling around in the tree canopy foraging for vegetation, fruits, fungi, invertebrates, and the occasional smaller vertebrate, using its flexible sengi-like nose to probe around in crevices.

Much like modern common tenrecs it’s capable of hibernating for months at a time through periods of scarce food availability. It also accumulates alkaloid toxins in its body from its arthropod prey, advertising its unpalatability to predators with bold contrasting warning coloration on its wing membranes.

And here’s a combination of a couple of anonymous requests for both “flying heterodontosaurs” and “dragons with hind leg wings, a la sharovipteryx”:

A shaded sketch of a speculative flying predatory heterodontosaurid dinosaur, show both on the ground in a quadrupedal posture and in flight. Its hind legs form its main wings, with elongated outer toes supporting large pterosaur-like flight membranes. It also has a hooked beak at the front of fanged jaws, an s-curved neck, a compact fuzzy body, short forelimbs with taloned hands and small stabilization membranes, and a long vaned tail.

Inversodraco rapax is a highly specialized Jurassic descendant of heterodontosaurids that took to climbing and gliding, developing delta-wing-like membranes on their hindlimbs convergently similar to those of the earlier sharovipterygids.

Around 75cm long (~2’6″), it has unusually flexible hip joints for a dinosaur, able to splay its legs out to the sides to deploy wings supported by an elongated outer toe on each foot. Its arms form small forewings for stability, and its long tail ends in a vane of stiffened feathers that aid in steering.

Unlike its herbivorous-to-omnivorous ancestors it’s primarily a carnivore, swooping down onto small prey and grabbing it with its talon-like forelimbs.

It Came From The Wastebasket #01: Is This An Insectivore?

Most of the wastebasket taxa featured this month are completely extinct and known only from fossils, but to start things off let’s take a look at a major example of how even groups with living members could have their classification muddled up for centuries.

The name Insectivora first came into use in the early 1820s, and was used to refer to various “primitive-looking” small insect-eating mammals, with modern shrews, moles, hedgehogs, tenrecs, and golden moles as the original core members.

An illustration showing the animals that originally made up "Insectivora". From left to right it pictures a shrew, a tenrec, and a hedgehog on the top row, and a mole and a golden mole on the bottom row. Text at top of the the image reads "Insectivora".

Then over the next few decades solenodons, treeshrews, sengis, and colugos all got lumped in with them too.

By the early 20th century insectivorans were considered to represent the “primitive” ancestral stock that all other placental mammals had ultimately descended from, and any vaguely similar fossil species also got dumped under the label. Extinct groups like leptictids, cimolestans, adapisoriculids, and apatemyids all went into the increasingly bloated Insectivora, too, making the situation even more of a wastebasket as time went on.

An illustration showing the animals that made up the expanded historical version of "Insectivora". From left to right it pictures a leptictidan, a shrew, a tenrec, a hedgehog, and a sengi on the top row, an apatemyid, a mole, a golden mole, and a solenodon in the middle row, and a cimolestan, a colugo, and a treeshrew on the bottom row. Text at top of the the image reads "…Insectivora?", styled like a typewritten label that has been stuck over the previous image's text.

The problem was that the only characteristics that really united these various animals were very generic “early placental mammal” traits – small body size, five clawed digits on the hands and feet, relatively unspecialized teeth, and mostly-insectivorous diets – and attempts at making sense of their evolutionary relationships were increasingly convoluted.

An image of a diagram from a 1967 academic paper, showing a complicated attempt to figure out the evolutionary relationships of "insectivores", with many different group names linked by arrows. For comparison next to it is the "Pepe Silvia" conspiracy wall meme.
…They’re the same image.

(Image sources: http://hdl.handle.net/2246/358 & https://knowyourmeme.com/memes/pepe-silvia)

The rise of cladistic methods from the 1970s onwards resulted in a lot of “insectivores” finally being recognized as unrelated to each other, removing them from the group and paring things back down closer to the name’s original definition. The idea that insectivorans were ancestral to all other placentals was abandoned, instead reclassifying them as being related to carnivorans, and the remaining members were recognized as just retaining a superficially “primitive” mammalian body plan.

Just shrews, moles, hedgehogs, solenodons, tenrecs, and golden moles were left, and to disassociate from the massive mess that had been Insectivora this version of the group was instead now called Lipotyphla.

An illustration showing the animals that made up "Lipotyphla". From left to right it pictures a solenodon, a tenrec, and a hedgehog on the top row, and a shrew, a mole, and a golden mole on the bottom row. Text at top of the the image reads "Lipotylpha", styled like an embossed label-maker sticker that has been stuck over the previous images' text.

But there were still no unique anatomical links between the remaining lipotyphlans. And then once genetic methods became available in the late 1990s, something unexpected happened.

Studies began to suggest that tenrecs and golden moles were actually part of a completely different lineage of placental mammals, the newly-recognized afrotheres, with their closest relatives being sengis and aardvarks. Meanwhile the rest of the lipotyphlans were laurasiatheres, closely related to bats, ungulates, and carnivorans.

Lipotyphla was suddenly split in half. For a while it was unclear if even the remaining shrew-mole-hedgehog-solenodon group was still valid – hedgehogs’ relationships were especially unstable in some studies – but by the mid-2000s things began to settle down into their current state.

Finally, after almost 200 years of confusion, the insectivore wastebasket has (hopefully) now been cleaned up. The remaining “true lipotyphlans” do seem to all be part of a single lineage, united by their genetics rather than by anatomical features, and are now known as Eulipotyphla.

A few fossil groups like nyctitheriids and amphilemurids are generally also still included, but since this classification is based just on their anatomy it isn’t entirely certain. The only exception to this are the nesophontids, which went extinct recently enough that we’ve actually recovered ancient DNA from them and confirmed they were eulipotyphlans closely related to solenodons.

An illustration showing the animals that now make up Euipotyphla. From left to right it pictures a solenodon, and a hedgehog on the top row, and a shrew, a mole, and an amphilemurid on the bottom row. Text at top of the the image reads "Eulipotylpha", with the letters "E" and "U" hastily scribbled onto the front of the previous image's text.

And a bonus image with species IDs:

Continue reading “It Came From The Wastebasket #01: Is This An Insectivore?”