Shri

About 72 million years ago, in the Late Cretaceous of what is now Mongolia, a dead dromaeosaurid dinosaur lost its head.

30 years ago, in 1991, its headless fossilized remains were discovered during a joint Mongolian Academy of Sciences / American Museum of Natural History expedition in the Gobi Desert.

For a long time the specimen was known only by the nickname of “Ichabodcraniosaurus”, in reference to a character haunted by a headless ghost in the story The Legend of Sleepy Hollow – but now it’s finally been given a full scientific description and a proper name.

Say hello to the first new non-avian dinosaur of 2021, Shri devi!

Named after a buddhist deity, this little dinosaur was around 2m long (6’6″), roughly the size of a modern peacock or wild turkey. It was a very close relative of Velociraptor, but lived in a slightly different part of the ancient Gobi than its famous cousin, giving us a glimpse of how dromaeosaurid species varied across that region.

A map of the Gobi region of Mongolia and China, showing locations where various dromaeosaurid dinosaur fossils have been found.
[ From fig 28 in Turner, A. H. et al (2021). A New Dromaeosaurid from the Late Cretaceous Khulsan Locality of Mongolia. American Museum Novitates. https://doi.org/10.1206/3965.1 ]

Eons Roundup 9

New year, new PBS Eons commission roundup day!

The ancient walruses Neotherium and Valenictus, from “How the Walrus Got Its Tusks”
https://www.youtube.com/watch?v=BKDGYGV2LK8

The nodosaurid ankylosaur Borealopelta, in both alive and “bloat-and-float” carcass states, from “The Dinosaur Who Was Buried at Sea”
https://www.youtube.com/watch?v=a-UZXBF63z4

The ankylosaurid ankylosaurs Gobisaurus and Dyoplosaurus, from “How Ankylosaurs Got Their Clubs”
https://www.youtube.com/watch?v=lRt-4SdzWrk

Leptostomia

Leptostomia begaaensis here is a recently-discovered pterosaur that lived during the mid-Cretaceous period, around 100 million years ago.

Its fossil remains were found in the Kem Kem beds of Morocco – ancient river deposits famous for yielding some of the newer specimens of the bizarre aquatic dinosaur Spinosaurus – and consist of just a couple of small pieces of jaw bones.

But those fragments are rather weird for a pterosaur.

While it’s hard to tell for certain from such meagre remains, Leptostomia might have been part of the azhdarchoid lineage, related to both the elaborately-crested tapejarids and the terrestrial-stalking giants like Quetzalcoatlus. And if it was indded an azhdarchoid it was an especially tiny one, possibly the smallest known member of the whole group. Based on the proportions of its relatives it would have stood just 30cm tall (1′) with a wingspan of 60-70cm (2′-2’4″), roughly comparable in size to a modern pigeon.

And it had an incredibly long beak that tapered to a thin delicate tip, resembling the beaks of modern probe-feeding shorebirds more than any other known pterosaur. It may have been specialized for the same sort of ecological niche, poking around in mud and shallow water for small invertebrates and snapping them up, possibly detecting its hidden prey using super-sensitive nerve endings in the tip of its beak.

Elsornis

The enantiornitheans (“opposite-birds”) were the most diverse and widespread group of Mesozoic birds, existing all around the world throughout the Cretaceous period. They retained claws on their wings and had toothy snouts instead of beaks, and while most of them lacked the lift-generating tail fans of modern birds they appear to have still been very adept fliers.

But Elsornis keni here was doing something different.

Known from the Late Cretaceous of Mongolia, about 80 million years ago, this opposite-bird  lived alongside famous dinosaurs like Velociraptor and Protoceratops in what is now the Gobi Desert. Only a single partial specimen has ever been found, so its full life appearance is unknown and this reconstruction is somewhat speculative, but it would have been around the size of a pigeon at 25cm long (10″) – not including any decorative tail feathers it may have had, similar to other enantiornitheans.

It wing and shoulder bones were very odd for an opposite-bird, with proportions that don’t match anything capable of competent flight. Instead Elsornis appears to have been a flightless enantiornithean, a representative of a previously unknown terrestrial lineage.

Spectrovenator

(This is a couple of days late for Halloween, but since this October saw the description of a new dinosaur species with a particularly spooky name, I couldn’t resist putting it into the schedule anyway.)

Spectrovenator ragei was an early member of the abelisaurid lineage, living in southeastern Brazil during the Early Cretaceous, about 120 million years ago. It was one of the smallest known abelisaurids, measuring just 2m long (6’6″), and lacked a lot of the skull specializations seen in larger-bodied Late Cretaceous forms like Carnotaurus, suggesting it was more of a generalist predator.

Its genus name translates to “ghost hunter” due to it being found underneath the fossil remains of another dinosaur entirely – a “ghost” unexpectedly appearing when the specimen was being prepared – but it’s extra appropriate since it also helps to fill in a rather sizeable ghost lineage in the fossil record of abelisaurids.

Anzu

Named after the mythological bird-like Anzû – and also nicknamed “the chicken from hell” – Anzu wyliei was one of the larger known oviraptorosaurs, measuring about 3m long (9’10”).

Its fossils are some of the most complete for a North American member of this dinosaur group, with four different specimens representing about 80% of the whole skeleton.

Living right at the end of the Cretaceous, about 66 million years ago in North Dakota and South Dakota, USA, Anzu inhabited the ancient floodplains of Hell Creek and appears to have been a fairly fast-moving omnivorous generalist. It had a large crest on its head made of rather fragile thin-walled bone, which may have been used for display or sound amplification similar to the casque of modern cassowaries.

Some of the fossil specimens also show evidence of healed injuries, including a broken rib and an arthritic toe.

Eons Roundup 8

Once again it’s a PBS Eons commission roundup day!

An unnamed Cerro Ballena rorqual whale and the long-necked seal Acrophoca, from “How the Andes Mountains Might Have Killed a Bunch of Whales”
https://www.youtube.com/watch?v=iNk6r5WljGc

The poposauroid pseudosuchians Shuvosaurus (life restoration) and Effigia (skeletal) from “When Dinosaur Look-Alikes Ruled the Earth”
https://www.youtube.com/watch?v=QsmV34Co32c

Qianshanornis

Many modern predatory birds have enlarged claws on their second toes, similar to those of their paravian dinosaur ancestors – with seriemas being a particularly good example.

Seriemas are part of a lineage known as cariamiformes, highly terrestrial birds that were widespread across most of the world but are today represented today by only two living species in South America. During the Cenozoic this group repeatedly evolved into large predatory flightless forms like the the phorusrhacids and bathornithids, and were probably the closest avians ever got to recreating the “carnivorous theropod” body plan and ecological niche.

And yet none of them ever seem to have experimented with more dromaeosaurid-like claws.

…With one known exception.

Qianshanornis rapax here lived in East China during the mid-Paleocene, about 63 million years ago. It was a small cariamiform, probably around 30cm tall (1″), and is only known from fragmentary fossil material – but part of those fragments was a fairly well-preserved foot. And the bones of its second toe were unlike any other known Cenozoic bird, shaped incredibly similarly to those of dromaeosaurids and suggesting it may have had the same sort of big hyperextendible “sickle claw”.

While it had sturdy legs and short wings, and probably spent a lot of time walking on the ground like other cariamiformes, it was probably also still a fairly strong flier based on the known anatomy of its arms and shoulders.

Unfortunately, though, its head and claws were entirely missing, so without more fossil discoveries it’s hard to say anything definite about its ecology. I’ve restored it here based on other predatory cariamiformes, but since it was also closely related to a herbivorous species it’s not clear whether Qianshanornis was truly a dromaeosaur-mimic or if something else was going on with that unique second toe.

Prenoceratops

Although much less famous than their larger horned and frilled relatives, the leptoceratopsids were a widespread and successful group of ceratopsian dinosaurs during the Late Cretaceous, with fossils known from North America, Asia, and Europe (and, dubiously, Australia).

They were fairly small stocky quadrupedal dinosaurs, sort of pig-like, with short deep jaws and powerful beaks adapted for eating fibrous low-level plants like ferns and cycads – and to process such tough food they even evolved a chewing style similar to mammals like rodents.

Prenoceratops pieganensis here is known from the Two Medicine Formation bone beds in Montana, USA, dating to about 74 million years ago. Around 1.5-2m long (~5′-6’6″), it was very similar to its later relative Leptoceratops, but had a slightly lower, more sloping shape to its skull.

Weird Heads Month #29: Giant Saw-Toothed Birds

The pelagornithids, or “pseudotooth birds”, were a group of large seabirds that were found around the world for almost the entire Cenozoic, existing for at least 60 million years and only going completely extinct just 2.5 million years ago.

Their evolutionary relationships are uncertain and in the past they’ve been considered as relatives of pelicaniformes, albatrosses and petrels, or storks, but more recently they’ve been proposed to have been closer related to ducks and geese instead.

Whatever they were, they were some of the largest birds to ever fly, and many of the “smaller” species still had wingspans comparable to the largest modern flying birds.

But their most notable feature was their beaks. Although at first glance they look like they were lined with pointy teeth, these structures were actually outgrowths of their jaw bones covered with keratinous beak tissue. While these bony spikes would have been useful for holding onto slippery aquatic animals like fish and squid, they were actually hollow and relatively fragile so pelagornithids must have mainly caught smaller prey that couldn’t thrash around hard enough to break anything.

The serrations also only developed towards full maturity, and the “toothless” juveniles may have had a completely different ecology to adults.

Pelagornis chilensis here was one of the larger species of pelagornithid, with a wingspan of 5-6m (16’4″-19’8″), known from the western and northern coasts of South America during the late Miocene about 11-5 million years ago.

Like other pelagornithids it was highly adapted for albatross-like dynamic soaring, with long narrow wings that allowed it to travel huge distances while expending very little energy – but with its proportionally short legs it would have been clumsy on the ground and probably spent the vast majority of its life on the wing, only returning to land to breed.