Eons Roundup 9

New year, new PBS Eons commission roundup day!

The ancient walruses Neotherium and Valenictus, from “How the Walrus Got Its Tusks”

The nodosaurid ankylosaur Borealopelta, in both alive and “bloat-and-float” carcass states, from “The Dinosaur Who Was Buried at Sea”

The ankylosaurid ankylosaurs Gobisaurus and Dyoplosaurus, from “How Ankylosaurs Got Their Clubs”

Eons Roundup 8

Once again it’s a PBS Eons commission roundup day!

An unnamed Cerro Ballena rorqual whale and the long-necked seal Acrophoca, from “How the Andes Mountains Might Have Killed a Bunch of Whales”

The poposauroid pseudosuchians Shuvosaurus (life restoration) and Effigia (skeletal) from “When Dinosaur Look-Alikes Ruled the Earth”

Eons Roundup 6

Time for some more recent commissions from PBS Eons!

The hyainailourids Megistotherium osteothastes and Hyainailouros napakensis, from “When Giant Hypercarnivores Prowled Africa

The bear-dogs Daphoenus demilo and Amphicyon giganteus, from “The Forgotten Story of the Beardogs

The early panda Ailuropoda microta, from “The Fuzzy Origins of the Giant Panda


We have a fairly good picture of the evolutionary origins of most groups of aquatic mammals – except for the pinnipeds. The fossil record of early seals is still rather sparse, and for a long time the earliest known species was Enaliarctos, an animal that was already very seal-like and didn’t help much in figuring out whether seals’ closest living relatives are bears or musteloids.

But then Puijila darwini was found in the late 2000s, a transitional form with a near-complete skeleton, filling in a gap in our understanding so conveniently it almost seems too good to be true.

This is the equivalent of Archaeopteryx for seals.

Discovered in Nunavut, Canada, Puijila dates to the early Miocene, about 23-20 million years ago. It was a small freshwater otter-like animal, about 1m long (3’3″), with a long tail and webbed feet adapted for paddling with all four of its limbs.

It lived at around the same time as the more specialized Enaliarctos, so it wasn’t a direct ancestor of modern seals, instead being part of an early offshoot lineage that retained more basal characteristics – but it does gives us a clue as to what the earliest pinnipeds looked like. Along with genetic studies it also helped to clarify that seals’ closest relatives are indeed the musteloids, although they’re estimated to have last shared a common ancestor around 45 million years ago so there’s still a lot of time unaccounted for in the proto-seal fossil record.

Several other fossil species that were previously thought to be musteloids have now also been recognized as close relatives of Puijila, and it seems that they were a fairly widespread group basically filling the ecological niche of otters at a time before true otters existed.

Most surprising and frustrating of all, however, is that some of these other otter-seals actually survived all the way into the Pleistocene, only going completely extinct sometime in the last 2 million years.

We barely missed having them still alive today!

Eons Roundup 5

Some more recent commission work for PBS Eons!

The lemurs Archaeolemur and Pachylemur, from “When Giant Lemurs Ruled Madagascar”

The meridiungulatesNotiolofos and Antarctodon, from “When Antarctica Was Green”

The Near Eastern wildcat Felis silvestris lybica, from “How We Domesticated Cats (Twice)”

Island Weirdness #59 — Terrestrial Otters & Owls

The Mediterranean island of Crete had very few predators during the Pleistocene, with most being birds of prey. And with the terrestrial carnivore niches in the ecosystem left vacant, it was a semi-aquatic mammal and an owl that ended up taking advantage of that opportunity.

Neither were large enough to threaten the dwarf elephants and hippos, and don’t even seem to have habitually eaten even the smallest of the miniature giant deer. Instead these Cretan predators focused much more on the smaller land vertebrates on the island, preying on birds, shrews, rodents, amphibians, and reptiles.

A stylized illustration of an extinct otter. It has a blunt snout and chunky legs.
Lutrogale cretensis

Lutrogale cretensis (previously known as Isolalutra cretensis) was a close relative of the modern smooth-coated otter. It was about the same size as its living cousin, around 1m long (3’3″), but had stronger jaws and chunkier limbs.

Its skeleton shows features associated with walking and running more than swimming, and it seems that this was something of a “land otter” — still able to swim, but spending most of its time on land similar to the modern small-clawed otter.

Shellfish were likely still the main part of its diet, indicated by its crushing teeth. But it probably also regularly ate whatever small terrestrial vertebrates it could catch, since more aquatic otters are already known to prey on those types on animals when they can.

A stylized illustration of an extinct giant little owl. It has longer legs than its modern relatives, almost resembling a large burrowing owl.
Athene cretensis

Athene cretensis was yet another weird island owl, but this time not a descendant of a Strix or Tyto species. Instead this owl was descended from the Eurasian little owl — except it had become much much larger.

It stood around 60cm tall (2′), over three times bigger than its living relative. Its legs weren’t quite as long as those of the modern burrowing owl, but they were still proportionally much longer than those of little owls and show adaptations for terrestrial movement. Little owls already sometimes chase down prey on foot, and Athene cretensis was probably even more of a ground-based hunter, convergently similar to the Hawaiian stilt-owls and the Cuban terror owls.

Preserved pellets show that it ate small mammals and birds, mainly large mice.

Its wings were still quite large, and it was probably also a good flier — and may even have spread over to some of the Dodecanese islands to the east of Crete, since a wing bone closely resembling that of Athene cretensis has been found on Armathia.

Both of these predators seem to have disappeared around the end of the Pleistocene, at the same time as many of the other native Cretan species about 21,500 years ago. Much like the situation with Candiacervus, this may have been a result of a combination of a rapidly shifting climate and the presence of humans disrupting the already fragile island ecosystem.

Island Weirdness #56 — Cynotherium sardous

Despite being decent swimmers, canids are surprisingly rare in island ecosystems, only seeming to end up there when able to move over land connections with larger landmasses (or when brought there by humans). Even the most remote species, the recently-extinct Falkland Island wolf, is thought to have crossed over a short stretch of sea ice during the last glacial period.

So the existence of a unique canid on the Mediterranean islands of Sardinia and Corsica is quite unusual.

The Sardinian dhole (Cynotherium sardous) was a small fox-sized canid, just 50cm tall at the shoulder (1’8″), related to the modern African wild dog and dhole. It was probably descended from the much larger wolf-like Xenocyon, which would have been able to reach Sardinia-Corsica during the early-to-mid Pleistocene about 1.2 million years ago, at a time when lower sea levels connected the island to the European mainland via Tuscany.

Isolated with very little large prey, it instead evolved to specialize in hunting small fast-moving animals, flattening its body low to the ground while stalking in a similar manner to modern foxes or Ethiopian wolves. Powerful shoulder muscles allowed it to launch into sudden high-speed lunges, and it had an especially strong flexible neck that would have been used to grab at its zig-zagging targets and shake them to death.

Cynotherium went extinct sometime in the early Holocene, around 11,000 years ago, after the arrival of humans on Sardinia and Corsica.

The earliest definite human remains on Sardinia are at least 20,000 years old, and while it’s unclear if those were permanent settlers it still seems like Cynotherium was able to deal with the effects of a human presence for several thousand years, probably due to its main prey (the Sardinian pika) also surviving at the time. So its disappearance may have been caused by a combination of problems that slowly whittled away at its population, like the warming climate, gradual habitat destruction, and competition from introduced predators like feral dogs — or possibly even new diseases caught from them.

Island Weirdness #55 — Megalenhydris barbaricina

Along with its miniature mammoths, the Mediterranean island of Sardinia (and neighboring Corsica) had an unusually large amount of endemic mustelids during the Pleistocene and early Holocene. There were at least four different otters — probably all descended from a single species of Lutra — that occupied various ecological niches in both the rivers and the coasts, and also an enigmatic grison-like terrestrial species.

Megalenhydris barbaricina was the largest of the Sardinian-Corsican otters, reaching lengths of over 2m (6’6″), slightly bigger than the modern South American giant river otter. Its crushing teeth indicate it specialized in crunching through hard-shelled invertebrates like molluscs and crustaceans, and its highly flexible backbone and flattened tail suggest it was a strong swimmer that may have been even more aquatic than most other otters.

It was possibly an equivalent of the modern sea otter, spending most of its time in the water, although it’s not clear whether it was a river or marine species.

Dating on the one known partial skeleton of Megalenhydris is uncertain, but it may be late Pleistocene to early Holocene in age, between about about 70,000 and 10,000 years old. Unfortunately this puts it within the same age range as the arrival of humans on Sardinia and Corsica, and its extinction may have been a direct result of being hunted for its meat and pelt.

Eons Roundup 3

Some more recent work I’ve done for PBS Eons!

The eurypterids Hibbertopterus and Brachyopterus, from “When Giant Scorpions Swarmed the Seas

The short-faced bears Plionarctos and Arctotherium, from “The Mystery Behind the Biggest Bears of All Time

The big cats Panthera blytheae and Panthera atrox, from “The Ghostly Origins of the Big Cats


Nanodobenus arandai, a pinniped from the mid-to late Miocene (~16-9 mya) of Baja California Sur, Mexico. Although it would have looked very similar to a sea lion, it was actually an early member of the walrus lineage that lacked the specialized long tusks that characterize its modern relatives.

At just 1.65m long (5′5″) it was only about half the size of living walruses, making it the smallest member of the group ever discovered and leading to it being given the nickname “smallrus”.

It probably occupied a similar sort of fish-eating ecological niche as true sea lions – which eventually replaced it in the region after its extinction – and since it lived alongside several other larger species of walrus it may have become dwarfed to avoid direct competition with them.