Named after the canine-headed Ancient Egyptian god, Phiomicetus anubis is the first fossil cetacean to discovered, described, and named entirely by a team of Arab paleontologists.

Living during the mid-Eocene, about 43 million years ago, in a shallow sea-covered region that is now part of Egypt‘s Western Desert, Phiomicetus was an early protocetid – an amphibious foot-powered swimmer, at a transitional point in the evolution of whales from deer-like terrestrial animals to fully aquatic screaming torpedoes.

About 3m long (~10′), it had large jaw muscles and sharp teeth with wear patterns that suggest it was a raptorial hunter grabbing and snapping at prey with powerful bites. It would have probably tackled fairly big prey compared to other protocetids, hunting things like large fish, turtles, and even smaller whales in an ecological role similar to that of modern orcas.

Along with the distantly-related long-snouted Rayanistes it’s one of the earliest known whales from Africa, giving us further glimpses at a time period when early cetaceans were first dispersing out from the South Asian subcontinent via the ancient Tethys Sea.


What’s the most unexpected fossil you’d think could be found on the island of Jamaica?

How about an ancient rhino?

Hyrachyus here was an early member of the rhinocerotoids, a lineage of odd-toed ungulates that also includes the true rhinoceroses, the tapir-like and hippo-like amynodontids, the long-legged hyracodontids, and the giant indricotheriines.

This particular genus was very widespread for much of the Eocene, found across Europe, Asia, and North America, crossing back and forth between the continents via the North Atlantic land bridge.

The Jamaican Hyrachyus lived during the mid-Eocene, around 45 million years ago, and was very anatomically similar to the North American Hyrachyus affinis – with the known fossil material not being considered distinct enough to be assigned to a new species yet. It was also about 15-20% smaller than its mainland relative, standing only 25cm tall at the shoulder (10″), but it’s not yet clear if this was a case of insular dwarfism or not.

Its presence in ancient Jamaica suggests that there may have been some sort of land connection between the proto-island and Central America during the early Eocene, when a chunk of what would eventually become western Jamaica was located much closer to the coasts of Honduras and Nicaragua. It’s the only fossil ungulate known from the Caribbean, and one of only a few terrestrial mammals in the region with North American evolutionary roots (the others being the extinct rodents Caribeomys merzeraudi and Oryzomys antillarum, and modern solenodons).

Unfortunately these little rhinos didn’t get much time on their island home. Jamaica subsided fully underwater about 40 million years ago, drowning its unique Eocene ecosystem entirely, and wouldn’t re-emerge and be re-colonized until much later in the Cenozoic.


Just before the 2017 solar eclipse, some unusual fossils were discovered in Southern Wyoming, USA.

Consisting of a partial jawbone and a humerus, and dating to the mid-Eocene (~47 million years ago), the remains clearly belonged to an early even-toed ungulate – but one much bigger than the rabbit-sized herbivores known from that time. This was something closer in size and build to a large modern pig, standing at least 1m tall at the shoulder (3’3″).

It turned out to belong to a member of a somewhat obscure lineage known as the helohyids, a group whose evolutionary relationships are a bit uncertain but are generally considered to be part of the whale-and-hippo lineage. These pig-like animals were large opportunistic omnivores, possibly occupying a similar ecological role to the later entelodonts, with some Late Eocene forms reaching sizes comparable to black bears.

This new helohyid was named Heliosus apophis, inspired by the eclipse, with its genus name meaning “sun pig”, and its species name referencing a sun-devouring Ancient Egyptian deity.

It was one of the earliest known large-bodied members of the group, and shows that these animals must have increased in size very rapidly during their early evolution, going from rabbit-sized to pig-sized within just a couple of million years.


Modern mysticete whales all have baleen plates in their mouths, but before the evolution of these specialized filter-feeding structures the early members of their lineage still had toothy jaws.

Borealodon osedax here was one of those “toothed mysticetes”, living about 30-28 million years ago during the mid-Oligocene off the coast of Washington state, USA.

Unlike modern baleen whales it was small, about the size of a modern porpoise at around 2m long (6’6″), and the wear on its multi-cusped teeth suggest it was a predator taking slicing bites of fish – possibly using suction-assisted feeding like its close relatives the aetiocetids.

Its fossilized remains are also a rare example of an ancient whale fall, with characteristic bore holes in its bones from Osedax worms.


While the largest animal known to ever exist is an aquatic mammal (the modern blue whale), mammals on land have never managed to attain the same sort of massive sizes seen in the sauropod dinosaurs. This is probably due to a combination of factors, including their reproductive strategies, metabolisms, and physiological differences like lacking internal air sacs – but even being limited to overall smaller body sizes, some of the mega-mammals known to have evolved during the Cenozoic were still absolutely enormous.

And one of the largest was Paraceratherium transouralicum.

(The exact name of this animal has a long and complicated history, and in various times and places it’s also been known as Indricotherium, Baluchitherium, and Pristinotherium.)

Found across much of Eurasia during the Oligocene, about 34-23 million years ago, Paraceratherium was part of an ancient lineage of long-legged hornless rhinoceroses. It stood around 4.8m tall at the shoulder (15’9″) – big enough that most modern humans would be able to walk right underneath its belly without even having to duck – and it had elongated limbs and a long neck that gave it an overall appearance much more like a giant weird horse than a rhino.

There was a pair of downward-pointing tusks at the front of its upper jaw, and the shape of the nasal region of its skull suggests its nose formed a short prehensile tapir-like trunk, which would have been used to help grab and strip leaves from high branches.

I’ve also reconstructed it here with a speculative dewlap on its neck, used for both display and thermoregulation.


The protocetids were some of the first oceanic cetaceans, occupying a transitional position in the evolution of whales, with four paddle-like limbs and nostrils only partway up their snouts.

Early members of this group swam like otters, using a combination of undulating their bodies and paddling with large hind limbs, but somewhere in the Late Eocene they switched over to propelling themselves entirely with their tails and gave rise to even more whale-like forms like the basilosaurids.

And Aegicetus gehennae was right in the middle of that switch.

Discovered in the Wadi Al-Hitan (“Valley of the Whales”) fossil site in Egypt, Aegicetus lived around 37-35 million years ago. It was similarly-sized to earlier protocetids like Georgiacetus, measuring about 3.5m long (11’6″), but its hind limbs were proportionally smaller. Its hips were also completely disconnected from its vertebrae, giving it much more flexibility to undulate its body and tail – and preventing it from supporting its weight on land, suggesting that it spent its entire life in the water.

It wasn’t a direct ancestor to more “advanced” cetaceans, since it lived alongside several species of basilosaurids. Instead it seems to represent a late-surviving example of what the earlier protocetid-basilosaurid transitional forms would have looked like.

Eons Roundup 8

Once again it’s a PBS Eons commission roundup day!

An unnamed Cerro Ballena rorqual whale and the long-necked seal Acrophoca, from “How the Andes Mountains Might Have Killed a Bunch of Whales”

The poposauroid pseudosuchians Shuvosaurus (life restoration) and Effigia (skeletal) from “When Dinosaur Look-Alikes Ruled the Earth”


Back during the early Eocene, around 50 million years ago, global temperatures were much warmer than today, and in North America tropical and subtropical rainforests extended as far as Alaska.

And one of the most abundant animals in these balmy ecosystems was a small mammal called Hyopsodus, an early type of ungulate that was probably part of the perissodactyl lineage, closely related to the ancestors of modern horses.

Many different species of this genus have been discovered, ranging from rat-sized to cat-sized. Remains of Hyopsodus account for up to 30% of fossils in some locations, with tens of thousands of specimens known – although most of them are isolated teeth and jaw fragments.

(The illustration here depicts Hyopsodus wortmani, a 30cm/12″ long species which lived about 50-46 million years ago across the Western and Southern USA.)

More substantial skeletal remains of this little mammal are very rare, and initially seemed to show a long weasel-like body that resulted in Hyopsodus being given the nickname of “tube-sheep”. But more recent specimens have given us a better idea of its proportions, and it wasn’t really tubular at all. Instead it was probably built more like a cavy or a hyrax, with a more chunky body and a spine held more strongly curved.

Its teeth suggest it was a generalist omnivore, probably mainly eating a mixture of vegetation, fruits, seeds, insects, and occasionally smaller animals, and while its limbs were proportionally short it was likely still quite an agile fast-moving animal. It also appears to have had some ability to dig, and may have sheltered in burrows similarly to modern groundhogs.

But one of the most surprising things about the “tube-sheep” comes from studies of its braincase via CT scans of its skull. Its brain was unusually large for its size, and had enlarged areas associated with good senses of smell and hearing – and notably one sound-processing region (known as the inferior colliculus) was developed to a degree similar to those seen in echolocating animals.

Analysis of its ear bones suggest it wasn’t highly specialized for echolocation like bats, but may have still been capable of a more basic shrew-like version, using it for close-range navigation.


Last week’s weird-snouted Furcacetus wasn’t the only recently-discovered ancient platanistoid dolphin that deserves some attention.

Ensidelphis riveroi was described in the same paper, and also lived in the coastal waters around Peru during the early Miocene, about 19 million years ago. It was a little less closely related to its modern river-dwelling cousins than Furcacetus, and was slightly larger, estimated to have measured about 3m long (9’10”).

But what made it weird was its incredibly long snout, lined with around 256 tiny sharp teeth, which also curved markedly to the right side along its 55cm (1’10”) length.

Expectation vs reality

With only one known skull of Ensidelphis it’s impossible to tell if this was a natural condition for the species or if it was some sort of anomalous individual. It doesn’t seem to be a deformation of the fossil, at least.

Similar unusual right-side bending has been seen in the skulls of a few individuals of modern South Asian river dolphins, franciscanas, and Amazon river dolphins, possibly caused by injuries at a young age being exaggerated as the animals grew. However, many other platanistoid dolphins (especially squalodelphinids) are known to have naturally had similar bends in their snouts – but always to the opposite side, curving to the left instead of the right.

But naturally bent or not, what might Ensidelphis have been doing with that incredibly lengthy snoot?

Its long slender jaws would have had a fairly weak bite, so it probably wasn’t able to catch large prey, and it had a very flexible neck. Possibly it swam along near the seafloor using its snout to probe and sweep around in the sediment for buried small prey.

Modern South Asian river dolphins swim along on their sides while doing this – almost always on their right sides, interestingly enough – and if Ensidelphis did the same sort of thing then a snout bent in that direction might have been an advantage.


The two living subspecies of the South Asian river dolphin are the last surviving members of a lineage known as the Platanistoidea, an early evolutionary branch of the toothed whales. This group was once much more diverse and widespread than their modern representatives, found in oceanic habitats around the world from the Oligocene to the mid-Miocene.

Many of them had forward-pointing protruding teeth at the tips of their snouts, resembling those of some plesiosaurs or pterosaurs, suggesting they were a convergent adaptation used for snagging hold of slippery soft-bodied aquatic prey.

Furcacetus flexirostrum is one the newest additions to this group, named and described in late March 2020. It lived in Pacific coastal waters around Peru during the early Miocene, about 19-18 million years ago, and was about the same size as modern South Asian river dolphins at around 2.3m long (7’7″).

And it had a uniquely-shaped snout for a cetacean, curving upwards for most of its length but then turning downwards right at the tip, which along with large forward-pointing teeth gave its jaws a vaguely crocodilian appearance.

A closeup view of the jaws of Furcacetus.

Much like slender-snouted crocodilians and spinosaurids, this arrangement would have allowed Furcacetus to make quick bites at small-fast-moving prey like fish and crustaceans.