It Came From The Wastebasket #11: A Cetothere Change

Cetotheres were a group of small baleen whales, one of three major lineages of these cetaceans alongside the rorquals and the right whales. They first appeared in the fossil record in the mid-Miocene, about 14 million years ago (but are estimated to have actually originated 10-15 million years earlier), and disappeared during the Pleistocene about 2 million years ago.

First recognized in the mid-19th century, for a long time the cetotheres were used as a wastebasket for all fossil baleen whales that didn’t clearly fit into any modern whale families. By the start of the 21st century nearly 30 different genera representing numerous different species were all lumped into the group – and the genus Cetotherium was another wastebasket in itself with at least 12 assigned species, many of which were based on fragmentary or dubious remains.

An illustration of Ciuciulea, an extinct cetothere baleen whale. It looks similar to modern rorquals, with a streamlined and relatively slender body, but lacking the typical throat grooves of that type of whale. Its jaws are long and narrow, with a paired blowhole at the top of its head and small eyes set near the corners of its mouth. It also has fairly small flippers, a dorsal fin set about two-thirds of the way down its back, and a horizontal tail fluke. It's coloration is countershaded, mostly grey on top and white underneath.
Ciuciulea davidi

This was finally cleaned up in the 2000s, when a revision of the cetotheres cut the group down to just 6 genera. Since then a handful of additional new genera and species have been named, and while a few polyphyletic Cetotherium species may still need tidying up the cetotheres have overall gone from being a total taxonomic mess to actually being one of the best studied groups of fossil baleen whales.

Their exact evolutionary relationships with each other are still in flux, but the most surprising discovery from the improved understanding of these ancient whales is that they might not be extinct after all.

A set of three screenshots from the animated movie "Ice Age: Dawn of the Dinosaurs". The first image shows the two opossum characters Crash and Eddie asking, "Were you killed?!" The second image shows the weasel buck looking away and replying, "Sadly, yes…" The third image shows Buck leaning closer and adding "but I lived!" Buck's face has been photoshopped into that of a Cetotherium whale in both shots.

A study in the early 2010s suggested that the pygmy right whale may actually be a living cetothere. This classification was initially controversial, but further discoveries of fossil relatives of this enigmatic modern whale and comparisons of their distinctive inner ear anatomy have provided stronger evidence for an evolutionary link.

At this point it seems fairly likely that the pygmy right whale really is either the last surviving representative of the cetothere lineage, or at least is a very close evolutionary “cousin” (a “cetotherioid”) closer related to them than to any other modern baleen whales.

Casatia

Modern beluga whales and narwhals are the only living representatives of the monodontid lineage, found only in cold Arctic and sub-Arctic waters. But this whale family actually first evolved in much warmer climates – and some of them were downright tropical.

Casatia thermophila lived about 5 million years ago during the early Pliocene, in the Mediterranean Sea around Tuscany, Italy. Although known only from a couple of partial skulls and a few vertebrae it was probably similar in size to its modern relatives, around 5m long (16’4″).

It seems to have had a larger number of functional teeth than modern monodontids, and probably didn’t suction feed like its modern close relatives. Instead it may have fed more like most porpoises and dolphins, relying more on speed and snapping jaws to capture prey.

It inhabited the Mediterranean at a time not long after the sea there had mostly dried up and then been rapidly refilled. The presence of warm-water marine species such as bull sharks, tiger sharks, and dugongs in the same fossil beds as Casatia indicates the local climate at the time was hotter than it is today, with tropical temperatures – and suggests that this whale’s ancestors must have originally moved into the replenishing Mediterranean from lower latitudes alongside these other warmth-adapted animals.

This tropical monodontid was also much closer related to modern belugas than modern narwhals are, which raises the possibility that the two living monodontid species actually specialized for colder conditions completely independently of each other rather than descending from a cold-adapted common ancestor. Instead modern belugas and narwhals may have originated from separate warm-water monodontid ancestors who evolved similar cold-tolerant adaptations in parallel as the climate cooled during the onset of the Quaternary ice age, while the rest of their relatives all went extinct.

Kogiopsis

Kogiopsis floridana was a physeteroid whale that lived near the coast of the southeastern United States from the mid-Miocene to the early Pliocene, about 14-4 million years ago.

Known just from fossilized lower jaws and teeth, with some teeth up to nearly 13cm long (~5″), its full life appearance and size are uncertain – but it may have been slightly larger than a modern bottlenose dolphin at around 4.5m long (~14’9″). It’s traditionally been considered to be part of the kogiid family, closely related to modern pygmy and dwarf sperm whales, but some studies disagree with that classification and instead place it in the true sperm whale lineage.

It was probably a predator in a similar ecological role to modern orcas, adapted for hunting prey like squid, fish, and smaller marine mammals. But unlike orcas it wouldn’t have been the apex predator of its ecosystem, subject to predation pressure by even larger carnivores like macroraptorial sperm whales and everyone’s favorite ridiculously huge shark – and as a result it probably had a “live fast and die young” lifestyle similar to modern kogiids and other small-to-medium-sized Miocene physeteroids, rapidly maturing and only living to around 20 years old.

I’ve reconstructed Kogiopsis here as a kogiid-like animal, with a similar sort of shark-like head shape and “false gill” markings. In the background a second individual is depicted displaying “inking” behavior, releasing a defensive cloud of reddish-brown fluid from a specialized sac in its colon.

Phiomicetus

Named after the canine-headed Ancient Egyptian god, Phiomicetus anubis is the first fossil cetacean to discovered, described, and named entirely by a team of Arab paleontologists.

Living during the mid-Eocene, about 43 million years ago, in a shallow sea-covered region that is now part of Egypt‘s Western Desert, Phiomicetus was an early protocetid – an amphibious foot-powered swimmer, at a transitional point in the evolution of whales from deer-like terrestrial animals to fully aquatic screaming torpedoes.

About 3m long (~10′), it had large jaw muscles and sharp teeth with wear patterns that suggest it was a raptorial hunter grabbing and snapping at prey with powerful bites. It would have probably tackled fairly big prey compared to other protocetids, hunting things like large fish, turtles, and even smaller whales in an ecological role similar to that of modern orcas.

Along with the distantly-related long-snouted Rayanistes it’s one of the earliest known whales from Africa, giving us further glimpses at a time period when early cetaceans were first dispersing out from the South Asian subcontinent via the ancient Tethys Sea.

Borealodon

Modern mysticete whales all have baleen plates in their mouths, but before the evolution of these specialized filter-feeding structures the early members of their lineage still had toothy jaws.

Borealodon osedax here was one of those “toothed mysticetes”, living about 30-28 million years ago during the mid-Oligocene off the coast of Washington state, USA.

Unlike modern baleen whales it was small, about the size of a modern porpoise at around 2m long (6’6″), and the wear on its multi-cusped teeth suggest it was a predator taking slicing bites of fish – possibly using suction-assisted feeding like its close relatives the aetiocetids.

Its fossilized remains are also a rare example of an ancient whale fall, with characteristic bore holes in its bones from Osedax worms.

Eons Roundup 8

Once again it’s a PBS Eons commission roundup day!

An unnamed Cerro Ballena rorqual whale and the long-necked seal Acrophoca, from “How the Andes Mountains Might Have Killed a Bunch of Whales”
https://www.youtube.com/watch?v=iNk6r5WljGc


The poposauroid pseudosuchians Shuvosaurus (life restoration) and Effigia (skeletal) from “When Dinosaur Look-Alikes Ruled the Earth”
https://www.youtube.com/watch?v=QsmV34Co32c

Ensidelphis

Last week’s weird-snouted Furcacetus wasn’t the only recently-discovered ancient platanistoid dolphin that deserves some attention.

Ensidelphis riveroi was described in the same paper, and also lived in the coastal waters around Peru during the early Miocene, about 19 million years ago. It was a little less closely related to its modern river-dwelling cousins than Furcacetus, and was slightly larger, estimated to have measured about 3m long (9’10”).

But what made it weird was its incredibly long snout, lined with around 256 tiny sharp teeth, which also curved markedly to the right side along its 55cm (1’10”) length.

Expectation vs reality

With only one known skull of Ensidelphis it’s impossible to tell if this was a natural condition for the species or if it was some sort of anomalous individual. It doesn’t seem to be a deformation of the fossil, at least.

Similar unusual right-side bending has been seen in the skulls of a few individuals of modern South Asian river dolphins, franciscanas, and Amazon river dolphins, possibly caused by injuries at a young age being exaggerated as the animals grew. However, many other platanistoid dolphins (especially squalodelphinids) are known to have naturally had similar bends in their snouts – but always to the opposite side, curving to the left instead of the right.

But naturally bent or not, what might Ensidelphis have been doing with that incredibly lengthy snoot?

Its long slender jaws would have had a fairly weak bite, so it probably wasn’t able to catch large prey, and it had a very flexible neck. Possibly it swam along near the seafloor using its snout to probe and sweep around in the sediment for buried small prey.

Modern South Asian river dolphins swim along on their sides while doing this – almost always on their right sides, interestingly enough – and if Ensidelphis did the same sort of thing then a snout bent in that direction might have been an advantage.

Furcacetus

The two living subspecies of the South Asian river dolphin are the last surviving members of a lineage known as the Platanistoidea, an early evolutionary branch of the toothed whales. This group was once much more diverse and widespread than their modern representatives, found in oceanic habitats around the world from the Oligocene to the mid-Miocene.

Many of them had forward-pointing protruding teeth at the tips of their snouts, resembling those of some plesiosaurs or pterosaurs, suggesting they were a convergent adaptation used for snagging hold of slippery soft-bodied aquatic prey.

Furcacetus flexirostrum is one the newest additions to this group, named and described in late March 2020. It lived in Pacific coastal waters around Peru during the early Miocene, about 19-18 million years ago, and was about the same size as modern South Asian river dolphins at around 2.3m long (7’7″).

And it had a uniquely-shaped snout for a cetacean, curving upwards for most of its length but then turning downwards right at the tip, which along with large forward-pointing teeth gave its jaws a vaguely crocodilian appearance.

A closeup view of the jaws of Furcacetus.

Much like slender-snouted crocodilians and spinosaurids, this arrangement would have allowed Furcacetus to make quick bites at small-fast-moving prey like fish and crustaceans.

Weird Heads Month #19: Sword-Snouted Whales

Cetaceans are just weird animals in general. Fully aquatic mammals best described as “fat screaming torpedoes“, with bizarre head anatomy and their nostrils pulled up to the top of their heads behind their eyes. Some of them are among the largest animals to ever exist, some of them can live to over 200 years old, and some can dive to incredible depths below the ocean surface.

And they’re all descended from tiny deer-like creatures, with their closest living relatives being hippos and other even-toed ungulates.

Some ancient cetaceans were particularly odd-looking, evolving walrus-like tusks or elongated chins – or in the case of Eurhinodelphis longirostris here, an incredibly long swordfish-like snout.

Living during the mid to late Miocene, about 14-7 million years ago, Eurhinodelphis ranged across the Mediterranean and the North Atlantic, with fossil remains known from Western Europe, Turkey, and the East Coast of the United States. It was a fairly small dolphin-like cetacean about 2m long (6’6″), and was part of a lineage of early toothed whales called eurhinodelphinids.

Its upper jaw was around five times longer than the rest of its skull, and toothless past the point where the lower jaw ended. Much like the modern billfish it resembled, it probably used its snout to slash at fast-moving fish, stunning them and making them easier to catch.

Maiabalaena

The earliest baleen whales didn’t actually have any baleen plates in their mouths, and the evolutionary origin of these unique filter-feeding structures is still poorly understood.

It was thought to have been a fairly simple linear process from toothed ancestors to a mix of teeth and baleen and then to fully toothless with just baleen, but more recent discoveries have begun to cast doubt on that idea. The teeth of ancestral baleen whales weren’t suited to filter-feeding at all, instead still being adapted for predatory piercing and chewing – actions which would have been constantly interfering with and damaging any proto-baleen forming alongside them, and making it seem much more unlikely that there would have ever been a transitional form that had both teeth and baleen at the same time.

But then how did baleen whales get their baleen?

Maiabalaena nesbittae here provides a possible solution. Discovered in Oregon, USA, this early baleen whale dates to the early Oligocene, around 33 million years ago, and compared to most of its modern relatives it was comparatively tiny, only about 4.6m long (15′).

And it had no teeth at all, but possibly also no baleen.

Baleen rarely fossilizes, so it’s unclear whether Maiabalaena actually had any or not, but the shape of its skull suggests it probably didn’t – it lacked the broad thickened upper jaw associated with supporting racks of baleen plates. It instead seems to have been adapted for suction feeding similar to modern belugas and beaked whales, using muscular cheeks and tongue to manipulate water pressure and pull small prey like fish and squid straight into its mouth.

Since it lived at a time when the Antarctic Circumpolar Current was forming and cooling the oceans, changing ecosystems and prey availability, it may represent a previously unknown stage in baleen whale evolution – a point when they’d moved towards specializing for suction feeding and lost their teeth entirely, before transitioning again over to filter-feeding with baleen in a completely separate evolutionary development a few million years later.