Crystal Palace Field Trip Part 2: Walking With Victorian Dinosaurs

[Previously: the Permian and Triassic]

The next part of the Crystal Palace Dinosaur trail depicts the Jurassic and Cretaceous periods. Most of the featured animals here are actually marine reptiles, but a few dinosaur species do make an appearance towards the end of this section.

A photograph of a Crystal Palace ichthyosaur statue, posed hauled out of the water like a seal or crocodile. It's partially obscured by plant growth, and is in a state of slight disrepair – moss and lichen patches cover its sides, and a plant is growing out of a crack on its back. A moorhen can be seen in the water swimming towards it.

Although there are supposed to be three Jurassic ichthyosaur statues here, only the big Temnodontosaurus platyodon could really be seen at the time of my visit. The two smaller Ichthyosaurus communis and Leptonectes tenuirostris were almost entirely hidden by the dense plant growth on the island.

Two photographs of the Crystal Palace ichthyosaurs. On the left the island is clear of foliage and all three can be seen; and on the right is the current overgrown state.
Ichthyosaurs when fully visible vs currently obscured
Left side image by Nick Richards (CC BY SA 2.0)
Two photographs of the large Crystal Palace ichthyosaur, showing closer views of the eye, flipper, and tail fin. Int he background a second ichthyosaur can be seen through the foliage. A moorhen is pecking around near the flipper.
Head, flipper, and tail details of the Temnodontosaurus. A second ichthyosaur is just barely visible in the background.

Ichthyosaurs were already known from some very complete and well-preserved fossils in the 1850s, so a lot of the anatomy here still holds up fairly well even 170 years later. They even have an attempt at a tail fin despite no impressions of such a structure having been discovered yet! Some details are still noticeably wrong compared to modern knowledge, though, such as the unusual amount of shrinkwrapping on the sclerotic rings of the eyes and the bones of the flippers.

An illustration comparing the Crystal Palace depiction of an ichthyosaur with a modern interpretation. The retro version has long toothy jaws, very large eyes, a seal-like body, four scaly-looking flippers, and a small eel-like fin on its tail. The modern version is a much more dolphin-like animal with smaller eyes, smooth triangular flippers, a dorsal fin, and a vertical crescent-shaped tail fin.
Continue reading “Crystal Palace Field Trip Part 2: Walking With Victorian Dinosaurs”

Serpentisuchops

While the most iconic types of plesiosaur were long-necked with small heads and short blunt snouts, some of these marine reptiles actually developed the opposite sort of arrangement, with groups like the polycotylids and the pliosaurs independently evolving short necks, larger heads, and long snouts.

…Except some of them didn’t keep it quite that simple.

Serpentisuchops pfisterae here lived during the late Cretaceous, about 70 million years ago, in the ancient Western Interior Seaway covering what is now Wyoming, USA. This 7m long (~23′) plesiosaur was a member of the polycotylid lineage, but along with a long slender snout it also had an unusually long neck.

Some earlier polycotylids like Thililua had fairly long necks, too, but all of Serpentisuchops’ closest relatives were short-necked species, so it seems to have actually re-evolved this condition rather than inheriting it from its ancestors. Since no other marine reptiles in its habitat had this particular body plan, it was probably occupying a very specific ecological niche – the presence of attachment points for powerful neck muscles suggest it was able to swing its head sideways to snap its jaws at prey at high speed, with its longer neck giving it more reach than other polycotylids.

Umoonasaurus

Umoonasaurus demoscyllus was a small short-necked plesiosaur, about 2m long (6’6″), that lived in the polar shallow seas covering much of what is now Australia 115 million years ago during the Early Cretaceous.

Its known fossil remains include a specimen nicknamed “Eric”, one of the most complete opalized vertebrate skeletons ever found.

While most of its body was fairly generalized for a plesiosaur, its skull was unusually ornamented. A raised ridge along the middle of its snout shows evidence of supporting a larger keratinous crest, and smaller ridges over each of its eyes may have also had similar structures. These crests were fairly delicate so were probably mainly used for visual display, and might have been brightly colored.

Retro vs Modern #06: Plesiosaurus dolichodeirus

Plesiosaurs were first recognized as a distinct group of fossil animals in the early 1820s, only a few years after ichthyosaurs. Initially they were perceived as being closer in form to reptiles in the “chain of being” than the more fish-like ichthyosaurs were, and so the group’s scientific name ended up reflecting that early interpretation – “plesiosaur” roughly translates to “near to reptiles”.

The first named species of plesiosaur was Plesiosaurus dolichodeirus, based on a near-complete skeleton discovered by Mary Anning that revealed the strange long-necked proportions of these animals for the first time.


1830s-1850s

Early reconstructions of plesiosaurs in the 1830s compared them to “a snake threaded through a turtle”, giving them highly sinuous necks and a turtle-like body. Much like ichthyosaurs they were assumed to be amphibious, using their flippers to crawl up onto the shore like a sea turtle.

The 1850s Crystal Palace plesiosaur statues show a variant of this design with smooth skin textures and fairly flexible reptilian bodies, with powerful shoulders and flipper postures that give them an overall almost seal-like appearance.


1860s-1990s

From the 1860s onwards a more upright S-shaped neck pose became the most common depiction of plesiosaurs. The writhing snake-like necks persisted in some reconstructions of the extremely long-necked elasmosaurids, but the overall design for these animals that caught hold for the next century was an egg-shaped body with oar-like flippers and a swan-like neck – a body plan that would end up so influential in pop culture that it was incorporated into modern lake monster folklore, with the Loch Ness Monster being the most famous example.

During this period plesiosaurs were often portrayed as floating or swimming at the water’s surface, rowing along with their flippers and using their long necks to snatch up prey. They were generally assumed to still haul out turtle-style to lay their eggs on the shore, although it wasn’t clear how the very largest species would have been able to support their own weight.


2020s

Since the 1990s a boom of new plesiosaur species and biomechanical studies have brought a lot of changes to our understanding of these marine reptiles.

Their necks are now considered to have been less flexible, capable only of more gentle curving, and were probably much thicker and more streamlined with the body than previously depicted. Rather than oar-like rowing all four of their flippers were probably used in more of an “underwater flying” vertical motion similar to modern sea turtles – which is pretty fitting, considering that their closest living relatives are now thought to actually be turtles.

They gave live birth and were probably warm-blooded, with a thick layer of insulating blubbery fat and a teardrop-shaped body outline. Their skin texture was smooth, but one exceptionally well-preserved specimen shows a covering of tiny thin millimeter-sized scales that wouldn’t have been visible in life except in extreme closeup.

We now know Plesiosaurus itself was a fairly small species, around 3.5m long (~11’6″), with a broad body and a short thick tail that probably had a rudder-like fin – usually assumed to be vertically-oriented, but possibly horizontal instead. It lived during the Early Jurassic, about 201-183 million years ago, in the shallow tropical sea that covered what is now southern England, and had a rather small head compared to other plesiosaurs, with its eyes facing upwards and to the sides.

It had sharp needle-like teeth that would have been used to catch soft-bodied aquatic prey like fish and cephalopods. It’s not known whether it had extensive fleshy lips, croc-like snaggletoothed jaws, or something in-between, so the facial soft tissue on this particular reconstruction is rather speculative.

Styxosaurus

Styxosaurus snowii here was one of the largest known elasmosaurids, named after the mythological river separating the worlds of the living and the dead.

Reaching around 11m long (36′), with half of that being entirely neck, it lived during the late Cretaceous period about 83-80 million years ago in what is now the American Midwest – a region that at the time was submerged under a large inland sea.

With pointy interlocking teeth in its proportionally tiny head, Styxosaurus would have fed on slippery aquatic animals like fish and cephalopods, possibly using its long neck to get up close to its targets while the bulk of its body remained out of sight in dark murky waters. Large numbers of gastroliths found in the stomach regions of some specimens would have been used to grind up the hard parts of prey items after they were swallowed whole.

Seeleyosaurus

Seeleyosaurus guilelmiimperatoris here was a smallish plesiosaur (about 3.5m long / 11’6″) found in Germany during the early Jurassic, about 182 million years ago.

And back in the 1890s, a specimen of this species was discovered with soft tissue impressions showing a diamond-shaped tail fin.

But despite us knowing about plesiosaur tail flukes for such a long time, they’re surprisingly under-represented in reconstructions, never seeming to have become associated with the popular image of these animals in the same way that early pterosaur’s tail vanes did. It doesn’t help that no other direct impressions of plesiosaur tail fins have ever been found, or that the Seeleyosaurus specimen’s soft tissue got painted over at some point in the mid-1900s, making it incredibly difficult to study without causing further damage. 

(Perhaps modern non-invasive scanning techniques could be able to see under the paintjob, but as far as I’m aware nobody’s tried that yet.)

These tail fins are usually assumed to have been vertically oriented like those of other aquatic reptiles, moving side-to-side and acting like a rudder. However, there’s also a hypothesis that their fins might have actually been horizontal more like those of modern cetaceans and sirenians, based on several anatomical quirks – such as their tail regions being very wide and flat at the base, and the vertebrae at the tip being unusually pygostyle-like, very different from the way the tail bones of vertically-finned reptiles look.

Ophthalmothule

The cryptoclidids were fairly standard-looking plesiosaurs, with long necks and small heads – but those tiny skull bones were also rather fragile and so there’s very little good fossil material of their heads, making it difficult to figure out both their feeding ecology and their exact evolutionary relationships.

But a recently-discovered specimen from the Svalbard archipelago actually preserved a mostly-complete skeleton, including an unusually intact skull.

Given the name Ophthalmothule cryostea (meaning “frozen bones of the Northern eye”), this cryptoclidid lived about 145 million years ago, right at the boundary between the Jurassic and the Cretaceous.

It measured around 5m long (16’5″) and had proportionally huge eyes that faced upwards on its head – an adaptation for seeing in low-light underwater conditions, maximizing the amount of light reaching it from above.

Those big dark-adapted eyes suggest it may have been nocturnal, or spent a lot of time diving into very deep waters in search of food. Its skull had weak jaw muscles and delicate teeth, and its gut region contained a lot of fine gravelly sediment, so it probably mainly grubbed around for small soft-bodied prey on the sea floor.

At that point in time Svalbard would have been a little further south than it is today, at a subarctic latitude, but the area would have still experienced particularly long nights during the winter. So it’s possible Ophthalmothule also developed such big sensitive eyes to help it survive through those darker seasons.

Leivanectes

Elasmosaurids are often depicted with noodly snake-like or swan-like necks, but they were probably actually quite stiff and inflexible in life. And while we know from fossilized gut contents that they ate relatively small prey like fish, crustaceans, and cephalopods, exactly how they used their distinctive long necks is still uncertain.

There’s some variation in the sizes and shapes of their teeth, so it’s likely each species was specialized for slightly different feeding styles – we’ve even found a filter-feeding one! – and the recently-named Leivanectes bernardoi here adds in a little more diversity, too.

Living about 115-112 million years ago during the mid-Cretaceous of Colombia, Leivanectes would have been fairly large at around 9m long (29′6″), slightly bigger than the other elasmosaurid species known from the same ancient marine deposits. It had a reduced number of teeth in its jaws, but these teeth were also proportionally larger, suggesting that it may have been tackling bigger tougher prey than its relatives.

Unfortunately it’s currently only known from a single partial skull, so we don’t have any other clues about its ecology.

Mauriciosaurus

Mauriciosaurus fernandezi, a polycotylid plesiosaur from the Late Cretaceous of Mexico (~94-89 mya). About 1.9m long (6′3″) with a flipper-span of 1.5m (4′11″), it’s known from a near-complete skeleton with preserved soft tissue impressions. The fossil shows evidence of rows of very tiny scales, the skin outlines of the flippers, and also a thick layer of insulating blubbery fat.

Its body shape in life would have been similar to modern leatherback turtles, roughly teardrop-shaped and hydrodynamic – much chubbier than most plesiosaur reconstructions had been previously depicting!