Squaloraja

Discovered in the late 1820s by pioneering paleontologist Mary Anning, the odd-looking fossil of the cartilaginous fish Squaloraja polyspondyla seemed to have characteristics of both sharks and rays.

It was initially thought to be a “missing link” transitional form between those two groups, but later it was identified as being something else entirely – it was actually part of the chimaera lineage, much closer related to modern ratfish, and its ray-like features were due to convergent evolution for a bottom-feeding lifestyle.

Living during the early Jurassic period, about 200-195 million years ago, Squaloraja fossils are now known from the south coast of England, southern Belguim, and northern Italy. Around 30cm long (1’), this weird fish had a massive wide flat snout that looked like an even more extreme version of the long noses seen in some of its modern relatives, and this enormous snoot would have been absolutely packed with sensory receptors to help it locate small aquatic prey hidden in the muddy seafloor.

Some specimens also have a distinctive long horn-like spine on their foreheads, and since these individuals also have claspers it seems like this was a sexually dimorphic feature. Much like the smaller head claspers on modern chimaeras, male Squaloraja probably used this “horn” to hang onto females’ pectoral fins during mating – and with it being such a large elaborate structure it may also have been used for visual display purposes, too.

Harpagofututor

Sometimes sexual dimorphism in the fossil record is hard to identify for certain – and sometimes it’s incredibly obvious.

Harpagofututor volsellorhinus here is a wonderful example of the second category. This 17cm long (~7″) cartilaginous fish was a distant relative of modern chimaeras, and lived during the Early Carboniferous about 326-318 million years ago in the shallow tropical sea that formed the Bear Gulch Limestone deposits in Montana, USA.

While all specimens show an elongated eel-like body, they come in two different forms: one with a fairly normal skull, and one with a pair of huge jointed cartilaginous appendages in front of its eyes that resemble antennae or antlers.

The presence of large claspers on the “antlered” forms indicated they were males, with the weird appendages probably being used either for display or as “grappling hooks” to hang onto females during mating.

(Modern male chimaeras also have clasping structures on their heads!)

Meanwhile a couple of non-antlered specimens preserved with unborn offspring still inside their bodies confirmed that these unadorned forms of Harpagofututor were indeed females. Some of their young were quite large and well-developed, suggesting live birth, and with multiple different fetal growth stages found within a single mother it’s also a rare example of fossilized superfetation.

Weird Heads Month #11: Scissor-Toothed “Sharks”

The eugeneodontidans were a group of cartilaginous fish which convergently evolved to resemble sharks but were much closer related to modern chimaeras. Due to their cartilage skeletons usually little more than their teeth are found as fossils, and for a long time their ecology and life appearance has been poorly understood because of just how weird those teeth were.

These fish had unique “tooth whorls” in their lower jaws, and the most famous member of the group is probably Helicoprion, with the exact anatomical placement of its buzzsaw-whorl only being properly figured out in 2013.

But another eugeneodontidan named Edestus was equally strange.

Living during the late Carboniferous, about 306-299 million years ago, Edestus giganteus was the largest species in the genus, reaching estimated lengths of up to 6m (19’8″), similar in size to a modern orca or a particularly large white shark.

Let’s take a closer peek at that mouth.

A close up drawing of the head of the extinct shark-like fish Edestus. It has a single central row of large teeth in its upper and lower jaws.

Yes, that’s a single central row of teeth in both its upper and lower jaws.

Edestus‘ whorls grew in curving “banana-shaped” brackets that resembled an enormous pair of pinking shears, with new teeth being added on at the back and the oldest teeth occasionally being ejected off from the front. How this jaw arrangement worked was a longstanding paleontological mystery, with various bizarre ideas being proposed over the years – until a particularly well-preserved skull was analyzed in early 2019, revealing a two-jointed system in its lower jaw that allowed it to move its tooth brackets quickly back and forth, using a “snap-and-slice” motion to grab hold of prey like fish and soft-bodied cephalopods and cut them in half.

Along with body impressions from other related eugeneodontidans like Fadenia, showing a shark-like tail and a complete lack of rear fins, we now have a much better picture of what this bizarre fish probably looked like.

Falcatus

Falcatus falcatus, a 30cm long (12″) cartilaginous fish from the mid-Carboniferous of Montana, USA (~326-318 mya).

Although it looked very shark-like it was actually much more closely related to modern chimaeras, and its most distinctive feature was the forward-pointing “unicorn horn” spine just behind its head – a sexually dimorphic structure formed from a highly modified dorsal fin, found only on mature males.

The spine’s function is unknown for certain, but it may have been a sort of clasper involved in courtship and mating, since one fossil seems to preserve a female in the act of biting onto it. Some of its close relatives like Damocles and Stethacanthus also had similarly weird dorsal fins, so whatever these fish were actually doing with these structures it must have been a fairly successful strategy.

Falcatus lived out in the open ocean, with proportionally big eyes giving it good vision in deep dark water, and its large symmetrical tail fin suggests it was a fast maneuverable swimmer that actively chased after small prey. Numerous fossils have been found together, which may also indicate schooling behavior.

Although definite fossils of falcatids are only known from the Carboniferous, recently there’s been some possible evidence of them surviving for much much longer. A few isolated fossil teeth from Europe suggest that some of these fish may have persisted for at least another 180 million years into the Early Cretaceous, living in isolated deep water refugia environments in a similar situation to the modern coelacanth – making them fossils of what would have been “living fossils” at the time!