Coelacanths are represented today by just two surviving species, one in East Africa and one in Indonesia, both very similar in appearance and ecology to each other.

For a long time their lineage was thought to be all “living fossils“, retaining the same basic body plan for the last 400 million years – but more recent discoveries have revealed that these fish were actually much more diverse over the course of their evolutionary history.

Holopterygius nudus was a fairly early member of the group, living during the mid-Devonian about 385 million years ago. The only known fossil specimen was discovered in Germany in the 1970s, but it was originally thought to be a different type of fish entirely and wasn’t identified as being a coelacanth until over 30 years later.

And compared to its living relatives it was tiny, just 7cm long (2.75″), with a distinctive tapering eel-like tail. Its convergent close resemblance to modern cusk-eels suggest it may have occupied a similar ecological niche, living near the sea floor and hiding in tight spaces like crevices and burrows.


The extinct pycnodonts were a group of mostly circular-shaped fish, convergently similar to modern reef fish like marine angelfish or butterflyfish – but some of them developed much much weirder appearances.

Rostropycnodus gayeti here was one of the especially odd-looking forms, known from the mid-Cretaceous of Lebanon about 100-95 million years ago.

It had an elongated snout with the upper jaw longer than the lower, a pointed spiky horn on its forehead, and a massive pectoral region that bulged out at the front of its body. Meanwhile its pectoral fins were modified into big immobile spines, and its pelvic fins were highly reduced and positioned beneath another set of large spines.

And it was tiny, only about 5.5cm long ~(2″).

It would have been a slow swimmer, relying on its spikiness to deter larger predators, and it’s currently unclear what it ate with its unusual spiny snout. Many other pycnodonts had mouths full of round crushing teeth, but Rostropycnodus’ jaws seem to have been mostly toothless – so perhaps it used its snout to probe around in cracks or sediment for small soft-bodied invertebrates.


Falcatus falcatus, a 30cm long (12″) cartilaginous fish from the mid-Carboniferous of Montana, USA (~326-318 mya).

Although it looked very shark-like it was actually much more closely related to modern chimaeras, and its most distinctive feature was the forward-pointing “unicorn horn” spine just behind its head – a sexually dimorphic structure formed from a highly modified dorsal fin, found only on mature males.

The spine’s function is unknown for certain, but it may have been a sort of clasper involved in courtship and mating, since one fossil seems to preserve a female in the act of biting onto it. Some of its close relatives like Damocles and Stethacanthus also had similarly weird dorsal fins, so whatever these fish were actually doing with these structures it must have been a fairly successful strategy.

Falcatus lived out in the open ocean, with proportionally big eyes giving it good vision in deep dark water, and its large symmetrical tail fin suggests it was a fast maneuverable swimmer that actively chased after small prey. Numerous fossils have been found together, which may also indicate schooling behavior.

Although definite fossils of falcatids are only known from the Carboniferous, recently there’s been some possible evidence of them surviving for much much longer. A few isolated fossil teeth from Europe suggest that some of these fish may have persisted for at least another 180 million years into the Early Cretaceous, living in isolated deep water refugia environments in a similar situation to the modern coelacanth – making them fossils of what would have been “living fossils” at the time!


Coelacanths are famous for being “living fossils”, completely disappearing from the fossil record at the end of the Cretaceous but then being rediscovered alive just 80 years ago. But although they’re often thought to have physically changed very little over the last 300 million years or so, more recent discoveries are starting to show that coelacanth body forms and lifestyles were actually more varied in the distant past.

Meet the wonderfully-named Rebellatrix divaricerca, from the Early Triassic of British Columbia, Canada (~251-247 mya). Measuring around 1.3m long (4′3″), its body shape and large symmetrical forked tail suggest it was adapted for fast swimming. Unlike its slow-moving deep-water modern relatives this coelacanth was a speedy oceanic active predator, convergently similar to tuna or some sharks.

Since it lived in the immediate wake of the end-Permian “Great Dying” mass extinction, Rebellatrix may have rapidly evolved from more standard-looking coelacanths to take advantage of a suddenly vacant ecological niche – or it might be part of a more extensive unusual lineage whose other members simply haven’t been discovered yet.