Strange Symmetries #04: Even More Echinoderms

Early echinoderms seem to have gone through an asymmetrical phase before starting to evolving their characteristic radial symmetry. The first truly radial forms had three-way symmetry, but soon a group called the edrioasteroids upped that count to five.

First appearing in the fossil record around 525 million years ago in the early Cambrian, edrioasteroids were mostly shaped like discs or domes, and were immobile filter-feeders that lived permanently attached onto surfaces like the seafloor or the shells of other animals. Unlike most modern echinoderms their pentaradial symmetry was actually created by taking a tri-radial body plan and forking two of their arms near the bases to create a total of five.

A colored line drawing of Thresherodiscus, an extinct early echinoderm. It's a domed disc-shaped creature that looks like it has a starfish merged onto its upper surface – but the "arms" branch many more times than five, and not totally symmetrically, creating an erratic forking pattern. It's depicted with a dark purplish body and brighter orange arms.
Thresherodiscus ramosus

Thresherodiscus ramosus was an unusal edrioasteroid that lived in the shallow seas of what is now central Canada during the late Ordovician, around 460-450 million years ago. Up to about 4cm in diameter (~1.6″), its arms split additional times at irregular intervals, creating a complex asymmetrical branching pattern across its upper surface.

The tips of its arms protruded slightly over the rim of its body, and along with the erratic extra branching this may have been an adaptation to increase its food-gathering surface area.


Another group of early pentaradial echinoderms known as the blastozoans were characterized by erect feeding appendages called brachioles. But some blastozoans abandoned their five-way symmetry in favor of much stranger arrangements, sometimes having as few as two arms – and, in some cases, two mouths.

A colored line drawing of Amygdalocystites, an extinct early echinoderm. It has an oval body with a curving stem coming out from its right side, with the stem ending in a circular holdfast. Two "food grooves" run along its top edge, roughly in line with each other on each side of where its not-visible mouth is located. Each food groove has a single row of long tendril-like feeding appendages growing from its left edge. It's depicted with a red and yellow color scheme, with a striped stem and irregular stripes on its body giving a sort of flame-like pattern, and purple tips on its feeding appendages.
Amygdalocystites radiatus

Known from the same general area and time period as Thresherodiscus, Amygdalocystites radiatus was part of an Ordovician-to-early-Silurian lineage known as paracrinoids, which attached their irregularly-shaped bodies to the seafloor via a stem.

About 5cm long (~2″) Amygdalocystites had just two asymmetric arms forming “food grooves” along its upper edge, each lined with numerous long brachioles along just one of their sides. It probably orientated itself so its body was facing down-current, which would have created eddies that brought suspended food particles within easier reach of its brachioles.

Rhenopyrgus

Despite looking more like some sort of scaly tubeworm, Rhenopyrgus viviani here was actually an echinoderm, distantly related to modern starfish, brittle stars, sea urchins, crinoids, and sea cucumbers.

It was part of an extinct Paleozoic echinoderm lineage known as edrioasteroids, which lived attached to the seabed or on hard surfaces like the shells of other marine animals, using the tube feet on their five arms to catch food particles from the water around them.

Living during the Silurian, about 435 million years ago, in what is now Quebec, Canada, it stood around 3-4cm tall (1.2-1.6″), firmly anchored into the seafloor sediment by a bulbous sac-shaped base. Its long stalked body was somewhat flexible, and it was able to partially contract the top feeding region down under a “collar” of large scale-like armor plates.

Cambrian Explosion Month #13: Phylum Echinodermata – Sticking Around

It seems like echinoderms became five-way symmetric incredibly quickly following the group’s first appearances in the early Cambrian. We don’t really know why this secondary radial symmetry evolved in the group – but we do know that the common ancestors of all modern pentaradial echinoderms were suspension-feeding animals that lived attached to the sea floor.

And those ancestors were probably a group called the edrioasteroids.

Continue reading “Cambrian Explosion Month #13: Phylum Echinodermata – Sticking Around”