Hyopsodus

Back during the early Eocene, around 50 million years ago, global temperatures were much warmer than today, and in North America tropical and subtropical rainforests extended as far as Alaska.

And one of the most abundant animals in these balmy ecosystems was a small mammal called Hyopsodus, an early type of ungulate that was probably part of the perissodactyl lineage, closely related to the ancestors of modern horses.

Many different species of this genus have been discovered, ranging from rat-sized to cat-sized. Remains of Hyopsodus account for up to 30% of fossils in some locations, with tens of thousands of specimens known – although most of them are isolated teeth and jaw fragments.

(The illustration here depicts Hyopsodus wortmani, a 30cm/12″ long species which lived about 50-46 million years ago across the Western and Southern USA.)

More substantial skeletal remains of this little mammal are very rare, and initially seemed to show a long weasel-like body that resulted in Hyopsodus being given the nickname of “tube-sheep”. But more recent specimens have given us a better idea of its proportions, and it wasn’t really tubular at all. Instead it was probably built more like a cavy or a hyrax, with a more chunky body and a spine held more strongly curved.

Its teeth suggest it was a generalist omnivore, probably mainly eating a mixture of vegetation, fruits, seeds, insects, and occasionally smaller animals, and while its limbs were proportionally short it was likely still quite an agile fast-moving animal. It also appears to have had some ability to dig, and may have sheltered in burrows similarly to modern groundhogs.

But one of the most surprising things about the “tube-sheep” comes from studies of its braincase via CT scans of its skull. Its brain was unusually large for its size, and had enlarged areas associated with good senses of smell and hearing – and notably one sound-processing region (known as the inferior colliculus) was developed to a degree similar to those seen in echolocating animals.

Analysis of its ear bones suggest it wasn’t highly specialized for echolocation like bats, but may have still been capable of a more basic shrew-like version, using it for close-range navigation.

Weird Heads Month #16: Big Honking Snoots

The dinoceratans featured here a few days ago were some of the first large mammalian herbivores to evolve in the Cenozoic, but during the Eocene they were joined by another group: the even bigger brontotheres.

Part of the odd-toed ungulate lineage, brontotheres convergently resembled rhinos but were actually much more closely related to horses. And much like the dinoceratans they also had some unusual heads, with some species evolving concave foreheads and sexually dimorphic ossicone-like pairs of blunt horns on their noses.

But others went really weird.

Embolotherium andrewsi lived in Mongolia during the late Eocene, around 37-34 million years ago. Standing around 2.5m tall at the shoulder (8’2″), it was one of the largest brontotheres and also one of the oddest-looking.

It had a large bony “battering ram” at the front of its snout, formed from modified nasal bones – and while some reconstructions tend to shrinkwrap this structure as a horn, the fact that the nasal cavity appears to have extended all the way to its tip suggests that it was actually supporting a huge bulbous nose.

Since Embolotherium also doesn’t seem to have been sexually dimorphic like other brontotheres, its enormous ridiculous-looking snoot may instead have been a resonating chamber used for sound production and communication.

Diplacodon gigan

Diplacodon gigan, a brontothere from the Early Eocene of Wyoming, USA (~46-42 mya). Standing around 2.1m tall at the shoulder (~7′) it was named after the kaiju Gigan for its relatively large size – not quite as big as some later brontotheres, but still about 20% larger than other known species of Diplacodon.

It had a pair of blunt bony projections on its snout which would have been covered with skin in life, similar to the ossicones of modern giraffids, with males having larger “horns” than females.

Despite looking very similar to rhinos, brontotheres were actually much more closely related to horses, with the resemblance being a result of convergent evolution for the same sort of big-tanky-herbivore ecological niche.

Unsolved Paleo Mysteries Month #11 – Strange Snoots: Equid Edition

Horse evolution is often represented as a simple progression from Eohippus* to modern Equus, but it was actually a lot more complicated than that – and some ancient horses had some very odd things going with their snouts…

(* For a long time Eohippus was considered synonymous with Hyracotherium, but more recently has been split back off as its own genus again.)


An illustration of the skull of an extinct horse, showing the unusually large holes in the bones in front of the eye sockets. Below is a reconstruction of the horse's head in life.
Pliohippus sp. skull and head reconstruction

Pliohippus, from the Middle Miocene of North America (~15-12 mya), and several of its other close relatives had especially large, deep recesses in their skulls, usually referred to as “preorbital fossae”.

And the purpose of these holes is still unknown. Although superficially similar depressions are seen in various other perissodactyl groups, they vary in position and structure and probably weren’t all homologous.

Ideas have included resonating chambers, some sort of glands, inflatable sacs, or attachment sites for complex lip musculature.


An illustration of the skull of an extinct horse, showing the unusually large nasal cavity. Below is a reconstruction of the horse's head in life.
Hippidion sp. skull and head reconstruction

Meanwhile Hippidion from the Pleistocene of South America (2 million – 10,000 years ago) had especially long and domed nasal bones. This must have supported an enormous nasal area – possibly giving it a saiga-like air-conditioning system, a highly sensitive sense of smell, or perhaps even some sort of prehensile proboscis-like snout.

Unless we find some exceptional soft-tissue preservation, the facial anatomy of these equids is going to remain enigmatic.