Schoenesmahl

Schoenesmahl dyspepsia was a lizard that lived in what is now Europe during the late Jurassic, about 150 million years ago. Around 30cm long (~1′), it had a fairly small head, elongated hind limbs, and a very long tail – proportions that suggest it was an agile animal capable of fast running.

Only one specimen is known, most notable for being preserved inside the stomach of the dinosaur Compsognathus. For a long time it was classified as an example of Bavarisaurus, but it was finally recognized as representing a distinct type of lizard in 2018, with recent studies placing it as an early member of the gecko lineage closely related to ardeosaurids and eichstaettisaurids.

Continue reading “Schoenesmahl”

Unguinychus

Drepanosaurs were a weird little group of tree-climbing Triassic reptiles with prehensile claw-tipped tails, chameleon-like bodies, humped backs, grasping feet, long necks, and somewhat bird-like skulls that may have been tipped with toothless beaks in some species.

Recently some of them have been recognized as also having adaptations for digging and ripping into insect nests, similar to modern anteaters, with highly specialized forelimb bones and a massively enlarged hoked claw on each hand.

And now we have another one of these digging drepanosaurs: Unguinychus onyx, whose name delightfully translates to “claw claw claw”!

Living in what is now New Mexico, USA during the late Triassic, around 215-208 million years ago, Unguinychus is only known from its enlarged hand claws but was probably similar in size to some of its close relatives, likely around 40cm long (~1’4″).

Based on skin impressions from the early drepanosaur Kyrgyzsaurus it also would have been covered in small scales, possibly with a skin crest and a chameleon-like throat sac.

Drepanosaurs’ evolutionary relationships are rather unclear, with various studies classifying them as an early branch of diapsid reptiles, as close relatives of the gliding kuehneosaurids, or as protorosaurian archosauromorphs. But recently another idea has been proposed, instead placing them slightly further up the archosauromorph evolutionary tree in the allokotosaur lineage close to trilophosaurids – and notably making them very closely related to fellow Triassic bird-headed weirdo Teraterpeton.

Continue reading “Unguinychus”

Jiangxichelys neimongolensis

Jiangxichelys neimongolensis was a terrestrial turtle that was part of an extinct group known as nanhsiungchelyids, whose closest living relatives today are the aquatic softshell turtles.

(This species was previously known as “Zangerlia” neimongolensis, but has since been moved into the genus Jiangxichelys instead.)

It lived towards the end of the Cretaceous, about 75-71 million years ago, in what is now the Gobi Desert – which at the time was more of a semi-arid climate with both rivers and sand dunes.

Its 60cm long (~2′) carapace had a long wide shape that made it appear rather flattened from the front, but not to quite as much an extreme as its larger American cousin Basilemys.

Several fairly well-preserved specimens have been found that appear to have been buried alive, probably either engulfed by sudden sandstorms or trapped in collapsing burrows. This has preserved some anatomical details previously unknown in nanhsiungchelyids, such as the pattern of scales on top of the head and the presence of large bony osteoderms on the underside of the front toes, which may have aided with traction on loose sandy ground.

Continue reading “Jiangxichelys neimongolensis”

Dinocephalosaurus

Dinocephalosaurus orientalis was a fully aquatic protorosaur reptile living in what is now southwest China during the mid-Triassic, about 244 million years ago.

Up to 6m long (~19’8″), it had a long serpentine body with paddle-like limbs and an especially elongated neck – but despite the superficial similarities to its semi-aquatic cousin Tanystropheus, Dinocephalosaurus’ long neck appears to have been independently evolved.

Much like the similarly-shaped elasmosaurs, its neck may have had a “stealth” function, allowing it to bring its jaws closer to targets before the rest of its body was visible, then using side-to-side snapping bites to catch its prey in its interlocking “fish-trap” teeth.

A preserved well-developed embryo inside one specimen also suggests that Dinocephalosaurus gave birth to live young, making it one of only two archosauromorph lineages known to have ever evolved this reproductive strategy.

Megapterygius

Most mosasaurs all had very similar body plans: they were streamlined scaly monitor-lizard-like marine reptiles with four rounded paddle-shaped flippers, and many of them also had large shark-like tail fins.

But Megapterygius wakayamaensis here seems to have been doing something a bit different.

Living towards the end of the Cretaceous, about 72 million years ago, in the waters covering what is now western Japan, this mosasaur was around the size of a modern orca, roughly 6m long (~20′).

Unlike other known mosasaurs its flippers were huge, bigger than its own head and distinctively wing-shaped, with the back pair being larger than the front. This is an arrangement oddly reminiscent of the unrelated plesiosaurs, and may suggest a convergent sort of highly maneuverable “underwater flight” swimming ability – but unlike plesiosaurs Megapterygius also still had a powerful fluked tail, so how exactly all of its fins worked together is still unknown.

It’s also the first mosasaur known to preserve potential evidence of a dorsal fin. Some of its back vertebrae show a change in orientation at the point where a fin base would be expected to be, closely resembling the vertebrae shape of cetaceans like the modern harbor porpoise.

Lewisuchus

Last week I mentioned the one oddball dinosauriform that had crocodilian-like osteoderm armor, so let’s take a look at that one too.

Lewisuchus admixtus lived in what is now northwest Argentina during the late Triassic, around 236-234 million years ago. About 1m long (3’3″), it was an early member of the silesaurids – a group of dinosauriforms that weren’t quite dinosaurs themselves, but were very closely related to the earliest true dinosaurs.

(They’ve also been proposed as instead being early ornithisichians, but we’re not getting into that today.)

Much like its later silesaurid relatives Lewisuchus had a long neck and slender limbs, and was probably mainly quadrupedal, possibly with the ability to briefly run bipedally to escape from threats. Its serrated teeth suggest it was carnivorous, likely feeding on both smaller vertebrates and the abundant insects found in the same fossil beds.

Uniquely for an early dinosauriform it also had a single row of bony osteoderms running along its spine. Although it lived at close to the same time as the similarly-armored Mambachiton their last common ancestor was at least 10 million years earlier, and no other early dinosaur precursors with osteoderms are currently known – so this was probably a case of Lewisuchus independently re-evolving the same sort of feature.

Mambachiton

Mambachiton fiandohana lived during the mid-Triassic, about 237 million years ago, in what is now Madagascar – which at the time wasn’t yet an island, still being connected to both east Africa and India as part of southern Pangaea.

It represents the earliest known branch of the avemetatarsalians, or “bird-line archosaurs”, a major group of the archosaur reptiles that also includes pterosaurs and dinosaurs/birds

It’s only known from a few fragments but it was probably around 2m long (~6’6″), and would have been a carnivorous lizard-like animal with a long neck and semi-erect quadrupedal limb posture.

Unexpectedly for a bird-line archosaur it also had a staggered double row of bony osteoderms along its back, suggesting that the very earliest avemetatarsalians had some crocodilian-like armor. This seem to have very quickly been lost, though – there’s no sign of osteoderms in the next branches to split off after Mambachiton, the aphanosaurs and pterosauromorphs – and although they occur again later in one dinosauriform and various non-avian dinosaurs, this appears to be multiple cases of independent re-evolution rather than retaining the original ancestral trait.

Wapitisaurus

Back in the 1980s, a fossil of a partial reptile skull was discovered in British Columbia, Canada, dating to the Early Triassic about 250 million years ago. Its triangular skull shape, large eye sockets, and what seemed to be distinctive spiky frills on the back of its head initially caused it to be identified as a relative of the gliding weigeltisaurids.

But the aptly-named Wapitisaurus problematicus would have had to be a very unusual member of this group. With an estimated length of up to 2m (6’6″) it was much larger than any other known weigeltisaurid, it was the only one known from the Triassic side of the “Great Dying” mass extinction event, it was found in a completely different part of the world, and its teeth seemed more like those of marine reptiles like thalattosaurs.

In recent years new discoveries and re-analysis of weigeltisaurid fossil material have resulted in much better modern understanding of their skull structure – and with that came the realization that Wapitisaurus really didn’t seem to match with them after all.

So a new study has finally identified what this problematic reptile really was… and it turns out the teeth didn’t lie! It was a marine thalattosaur all along!

Wapitisaurus had rather large eyes compared to most other North American thalattosaurs, and although the front parts of its jaws are missing it probably had a long slightly hooked snout similar to its close relative Thalattosaurus. It’s also now one of the oldest known members of the thalattosaur lineage, showing that some of their specialized skull features like retracted nostrils had actually appeared very quickly during their evolutionary history.

…Oh, and those “spiky frills” on the back of Wapitisaurus’ skull? They were actually all teeth from both the upper jaw and the palate, on broken shards of bone that had been displaced to just the right spot to muddle up its identity for over three decades.

Spectember 2023 #06: Some Big Reptiles

An anonymous request asked for a “large ankylosaur-like herbivorous notosuchian“:

A shaded sketch of a speculative ankylosaur-like animal related to modern crocodilians. It has a chunky body covered in interlocking armor plates, with a row of spikes down each side of its body and a longer pair of upward-pointing spikes on the bulbous tip of its tail. It has four squat legs, also armored, with hoof-like claws, and a short wide snout with large forward-facing nostrils.

Mitafosuchus pachysomatus is descended from Simosuchus-like notosuchians in Madagascar that survived through the K-T extinction.

Highly convergent with the now-extinct ankylosaurs, it’s a 5m long (~16’4″) squat tank-like herbivore with hoof-like claws, and a wide short snout used for grazing on low vegetation. Heavy interlocking osteoderm amor covers most of its body, protecting it against the big carnivorous crocodyliformes that also still survive in this version of Cenozoic Madagascar.


Another anon wanted to see a “giant warm blooded lizard”:

A shaded sketch of a speculative giant lizard descended from tegu. It has a small head with a slender snout, a crest on its head and a small pair of horns behind its eyes. Its neck is long and thick with a hanging fleshy dewlap, a chunky body with a sloping back, four legs in a semi-upright stance, and a long thick tail.

Atopohippus zestamenus is a descendant of invasive Argentine giant tegu lizards that became established on an island archipelago. At 2m tall (~6’6″) and around 6m long (~20′) it’s an example of island gigantism, and occupies a high-browsing-herbivore ecological niche similar to giant tortoises and prosauropods.

Its ancestors’ seasonal endothermy has become full endothermy in this species, partly due to young individuals having a very rapid growth rate and metabolism – their main defense against the predators on their island home (primarily carnivorous tegu-descendants and large birds of prey) is to simply get to a big body size as fast as they possibly can.

Hupehsuchus

Hupehsuchians were small marine reptiles closely related to ichthyosaurs, known only from the Early Triassic of southwestern China about 249-247 million years ago. They had toothless snouts, streamlined bodies, paddle-like limbs, and long flattened tails, along with a unique pattern of armor along their backs made up of overlapping layers of bony osteoderms.

Hupehsuchus nanchangensis was a mid-sized member of the group, about 1m long (3’3″). Newly-discovered fossils of its skull show that its long flattened snout had a distinctive gap between the bones (similar to the platypus-like snout seen in its relative Eretmorhipis) with an overall shape surprisingly convergent with that of modern baleen whales – suggesting that this hupehsuchian may have been a similar sort of filter-feeder.

A diagram comparing Hupehsuchus' skull to that of a modern baleen whale.
Hupehsuchus skull compared to a modern minke whale
From fig 2 & fig 3 of Fang et al (2023). First filter feeding in the Early Triassic: cranial morphological convergence between Hupehsuchus and baleen whales. BMC Ecol Evo 23, 36. https://doi.org/10.1186/s12862-023-02143-9

Grooves in the bones along the outer edges of its upper jaws may be evidence of filtering structures similar to baleen, although with no soft-tissue preservation we don’t know exactly what this would have looked like. Its slender flexible lower jaws probably also supported a large expandable throat pouch, allowing it to filter plankton out of larger volumes of water.