Falcatacaris

The enigmatic thylacocephalans were a group of bizarre little arthropods, found in marine deposits all over the world from the late Ordovician (~435 million years ago) to the late Cretaceous (~85 million years ago). They had shield-like bivalved carapaces, large compound eyes, three pairs of spiny grasping limbs, and multiple pairs of small paddle-like swimming limbs, but details of their internal anatomy are poorly known and their evolutionary relationships to other arthropods are still very uncertain.

Traditionally they’ve been classified as crustaceans, possibly as close relatives of remipedes or malacostracans – but they’ve also recently been proposed as instead being part of a much more ancient branch of arthropods, potentially related to stemmandibulates like Acheronauta.

Falcatacaris bastelbergeri was a thylacocephalan living during the late Jurassic, about 150 million years ago, in what is now Germany. Around 2.5cm long (~1″), its carapace had tiny interlocking square “teeth” resembling a zipper along the hinge line between the two valves, a ridge along each side, and a long pointed knife-shaped spine at the front.

Like other thylacocephalans it was probably a swimming predator, likely nocturnal or hunting in murky conditions based on its enlarged eyes, and would have captured smaller aquatic prey using its raptorial limbs.

Continue reading “Falcatacaris”

Escumasia

Nicknamed the “Y animal” or “wye”, Escumasia roryi is an enigmatic fossil organism known from the Late Carboniferous Mazon Creek fossil beds in Illinois, USA, dating to about 308 million years ago.

Growing up to around 15cm tall (~6″) this strange soft-bodied creature was Y-shaped, with two slender “arms” on each side of an apparent mouth opening, a flattened sac-like body with another opening on one side, and a long stalk ending in an attachment disc. Some specimens have uneven arm lengths, which may indicate damage from predation.

Being only known from the exceptional preservation conditions of Mazon Creek, and with nothing else quite like it in the known fossil record, Escumasia‘s evolutionary relationships are still a mystery. It’s been tentatively linked to cnidarians – but this doesn’t really fit based on its anatomy, and little further study has been done on it since its discovery in the 1970s.

It was probably a filter feeder, living attached to the seafloor and capturing suspended organic material or small planktonic prey with its arms. The environment it inhabited was a shallow tropical marine bay, located close to the equator at the time, near a large river delta that would have made the surrounding waters rather brackish. This ecosystem was dominated by cnidarians, particularly the anemone Essexella, along with various arthropods, lobopodians, polychaete worms, molluscs, echinoderms, fish, lampreys, hagfish, and other difficult-to-classify weirdos like the famous “Tully monster” Tullimonstrum.

Continue reading “Escumasia”

Typhloesus

Typhloesus wellsi has been a mystery for a long time.

First discovered in the early 1970s, in the mid-Carboniferous Bear Gulch Limestone deposits (~324 million years ago) of Montana, USA, it was initially mistaken for the long-sought-after “conodont animal” due to the presence of numerous conodont teeth inside its body. But just a few years later well-preserved eel-like conodont animals were found elsewhere, and it became apparent that the conodont teeth inside Typhloesus had actually just been part of its last meal.

But if it wasn’t a conodont… then what was it?

Up to about 10cm long (4″), Typhloesus had a streamlined body with a vertical tail fin and paired “keels” along its sides. It had a mouth and a gut cavity, but no apparent anus, and it also didn’t seem to have any eyes or other sensory structures. And in the middle of its body there was something very weird – a pair of “ferrodiscus” organs, disc-shaped structures which contained high concentrations of iron but whose function was completely unknown.

This anatomy just didn’t match any other known animals, so much so that it gained the nickname of “alien goldfish”.

For the next few decades it remained a bizarre enigma, at best tentatively considered to represent an unknown lineage of some sort of metazoan that left almost no other fossil record due to being entirely soft-bodied.

But now, 50 years after its initial discovery, we might just finally have a clue about Typhloesus’ true identity.

Recently something new was discovered in some Typhloesus specimens – a radula-like feeding structure that was probably part of an eversible proboscis. This would mean that Typhloesus was a mollusc, possibly a gastropod that convergently evolved a swimming predatory lifestyle similar to modern pterotracheoids.

It’s not a definite identification yet, and even if it was a mollusc it was an incredibly strange one, with features like the ferrodiscus still lacking any explanation. But this discovery at least shows that there are still new details waiting to be found in the “alien goldfish” fossils, and gives us a start towards bringing its classification back down to earth.

Cambrian Explosion #59: Stem-Crustacea – Actual Ancient Aliens & Bivalved Buddies

The majority of known fossils of Cambrian crustaceans are in the form of minuscule microfossils with “Orsten-type preservation” – formed in oxygen-poor seafloor mud and exceptionally well-preserved in three-dimensional detail. They can only be discovered and studied after dissolving away the rock around them with acid and picking through the residue under a microscope, then they’re scanned with an electron microscope to see their fine details.

And it turns out some of these tiny early crustaceans looked really weird.

Continue reading “Cambrian Explosion #59: Stem-Crustacea – Actual Ancient Aliens & Bivalved Buddies”

The Francevillian Biota

Life seems to have existed on Earth for over 4 billion years, but for much of that time it was primarily microscopic. And although multicellularity is known to have independently evolved multiple times, large complex forms didn’t really get started until around 600 million years ago, with the strange Ediacarans being some of the most famous early examples.

But that may not have been the first time such an evolutionary experiment happened.

A collection of fossils discovered near the city of Franceville in Gabon appear to represent an even earlier example of large multicellular life. Known as the “Francevillian biota” or “Gabonionta”, these fossils are over three times older then the Ediacarans, dating to a staggering 2.1 billion years ago during the Paleoproterozoic Era.

Over 400 specimens have been collected, representing a variety of different forms — including discs with ruffled edges, rods, rounded clusters of blobs, and elongated shapes that are sometimes attached to long “strings of beads” — with the largest reaching lengths of about 17cm (6.5”). Their age places them somewhere around the origin point of the earliest eukaryotes, and they may represent a completely unique kingdom of life unlike anything alive today.

These organisms’ appearance in the fossil record came shortly after the Great Oxygenation Event, suggesting the evolutionary development of large complex bodies is directly linked to the amount of available oxygen for aerobic respiration. Later, atmospheric oxygen dropped again, and the Francevillian biota disappeared into extinction, leaving us with only these mysterious fossils hinting at a surprisingly diverse and alien-looking period in life’s deep past.

Unsolved Paleo Mysteries Month #21 – Ancient Aquatic Aliens

Found only in the Carboniferous-aged Bear Gulch Limestone (~318 mya) in Montana, USA, Typhloesus wellsi is such a confusing animal that it’s been nicknamed “the alien goldfish”.

It was one of the first body fossils found containing conodont elements, leading to it initially being identified in the 1970s as the then-unknown conodont animal – until actual conodont animals were discovered a few years later, looking nothing like it. The elements were reassessed as actually being Typhloesus’ gut contents, indicating it was actually a conodont-eating predator or scavenger.

Reaching sizes of almost 10cm long (4″), it was vaguely fish-shaped with a pair of ventral fin folds and a stiffened vertical tail paddle. No obvious sensory structures are preserved, but there are impressions of a large gut cavity in the front half of its body, along with a pair of strange unidentified organs known as “ferrodiscus” that contained a high concentration of iron deposits.

And despite being known from over 50 specimens, we still don’t know where to classify it. At all. It lacks evidence of features like gill openings or a notochord that could associate it with chordates. Its gut appears to be a blind sack with no anus, a condition usually seen only in cnidarians and flatworms, and finned active swimmers are known in other invertebrate groups like molluscs and arrow worms, but Typhloesus doesn’t resemble anything like those either.

With the similarly mysterious Tullimonstrum recently getting a lot of attention and a possible identification as a lamprey-relative, perhaps somebody will eventually have another look at this strange little creature, too.

[EDIT: A 2022 study found evidence of a molluscan affinity for Typhloesus!]