Ursactis

Soft-bodied annelid worms only very rarely fossilize, so the group’s origins during the Cambrian Period are still rather poorly understood. So far about thirteen different species have been found in sites of exceptional preservation, showing that even very early on in their evolution these worms had already diversified into a wide range of ecologies including bottom-feeders, carnivores, swimmers, tube-builders, and even symbiotes sharing living space with early acorn worms.

Ursactis comosa here adds a fourteenth species to the list. Found in a newly-discovered outcrop of the 508-million-year-old Burgess Shale fossil deposits in western Canada, it’s known from nearly 600 specimens clustered together in several large groups, making it the current best-known and most numerous of all Cambrian annelids.

Up to about 1.5cm long (~0.6″), it was a polychaete-like worm bearing bundles of long bristles. There was a pair of large sensory palps on its head, and its body was made up of an unusually small number of segments – just 10, with larger individuals just increasing the size of their segments instead of adding on additional ones like most modern annelids.

Unlike other Cambrian annelids it also shows some evidence of basic tagmatization, differentiating some of the rear segments of its body with much longer bristles.

The large numbers of Ursactis found preserved in one place suggests these worms were exhibiting some sort of swarming behavior. Since ages from juveniles to fully-grown adults are represented together, and their anatomy indicates they were crawling detritivores, they were probably all taking advantage of a particularly nutrient-rich patch of seafloor at the time they were abruptly buried in a mudslide.

Strange Symmetries #10: Shellraiser

Brachiopods (also known as “lamp shells”) superficially look very much like bivalves, but these two groups aren’t very closely related to each other – although they’re both lophotrochozoans, their last common ancestor probably lived sometime in the Ediacaran at least 560 million years ago, and their similarities in appearance are due to convergent evolution.

The two valves of their shells are also arranged differently. Bivalve shells grow on their left and right sides and are usually symmetrical, but brachiopods form their shells from the upper and lower surfaces of their bodies.

As a result brachiopod shells are usually unequal in size and shape but have their own plane of bilateral symmetry down the center – but some of them still managed to become asymmetrical anyway.

Torquirhynchia inconstans lived during the Late Jurassic, about 161-145 million years ago, in the warm shallow seas that covered what is now Europe and Iran. Around 3cm across (~1.2″) it had a strongly ridged shell with an asymmetrical closing edge, positioned high on one side and low on the other.

This unusual uneven arrangment is thought to be an adaptation to living on soft sediments. Asymmetrical brachiopods like Torquirhynchia may have lived with one side of their body mostly buried into the seafloor, and twisted their shell edges so the still-exposed half was raised up to better function for water circulation and filter-feeding.

Strange Symmetries #07: Gastropods Do The Twist

Gastropods – snails and slugs – are a group of molluscs that originated sometime in the Cambrian Period, with the earliest definite stem-gastropods known from around 510 million years ago and the first true gastropods turning up in the early Ordovician.

The spiral-coiled shells of snails are their most familiar feature, giving them obvious external asymmetry, but gastropods are also defined by a specific type of internal asymmetry known as torsion.

Torsion is an anatomical process that occurs during larval development, and involves rotating their internal organs, mantle, and shell a full 180° relative to their head and muscular foot. This twists their gut into a U-shape, knots up their nervous system, and brings their respiratory organs and anus up close to their head.

And we still don’t really know why they do it.

One idea (the “rotation hypothesis”) is that it originated as a defensive function after early gastropods began developing their spiral shells. The shell opening may have originally been positioned at early gastropods’ rears, meaning they retracted their bodies back-end-first leaving their heads and sensory structures still vulnerable – but twisting the shell around would allow them to pull their front end in faster instead.

A competing idea (the “asymmetry hypothesis“) instead proposes that the shape of the coiled shell restricted the gills of early gastropods, which may have originally been positioned in mantle cavities on each side of their bodies. In response to this they developed a single larger gill cavity on just one side of their body, and then gradually expanded and rotated this asymmetric feature around to the front for better aeration.

In either case this resulted in some of the rest of their anatomy “coming along for the ride”. And regardless of whatever the original evolutionary advantage of torsion actually was, it made gastropods incredibly successful – they’re a massively diverse group, second only to the insects in terms of sheer number of species, and today they’re found all over the world in almost every habitat from deep sea trenches to high mountain elevations.

A colored line drawing of Spinyplatyceras, an extinct marine snail. It has a low coiling shell covered in very long thin pointed spines, and there are two short tentacles on its head. It's depicted with orange and black striped coloration on its shell, and a purplish body.
Spinyplatyceras arkonense

Spinyplatyceras arkonense lived in what is now Ontario during the mid-Devonian, about 391-385 million years ago. Around 5cm long (2″), it was part of a group of Paleozoic marine snails known as platyceratids, which were probably related to either modern limpets or neritomorphs.

Platyceratids seem to have had a unique parasitic relationship with crinoids, attaching themselves to the top of the host’s body and using their radula to drill into them, either robbing food directly from the crinoid’s gut or feeding on its other internal organs.

The long spines on Spinyplatyceras‘ shell probably helped to deter predators. In an interesting case of coevolution the crinoid hosts of some platyceratids developed their own defensive spines, too – and it seems this wasn’t to prevent the snails from infesting them, but to also discourage the snails’ predators. These crinoids may have been frequently indirectly injured during snail-eating predators’ attacks, and it might have actually “cost” them less to keep enduring an infestation than to deal with the collateral damage of the snails being removed.

Strange Symmetries #02: Oh Worm

Living during the Cambrian Period about 518 million years ago, Wufengella bengtsonii was discovered in the Chinese Chengjiang fossil deposits and was recently named and described in late 2022.

It was a small worm-like animal about 1.6cm long (~0.6″), with bundles of long bristles along its sides and flap-like structures on its underside. Its back was also covered with sclerite armor arranged in a strangely asymmetrical fashion, with larger overlapping plates in the middle and numerous smaller cap-like sclerites distributed unevenly along each side.

Although its bristles and appendages resemble those of annelid worms, the distinctive structure of the sclerites identifies Wufengella as being a member of the tommotiids – early relatives of modern lophophorates (bryozoans, brachiopods, and horseshoe worms). 

Its discovery actually confirms an old prediction that lophophorates probably originated from armored worm-like animals, representing an evolutionary link between earlier free-living annelid-like forms and later immobile filter-feeding tommotiids.

It’s not known why the armor on Wufengella‘s back was so unevenly organized – but some of the later tube-like tommotiids also had weird symmetry going on, with forms like Eccentrotheca having irregular sclerites arranged in a spiral around their bodies.

Cambrian Explosion Month #31: Phylum Brachiopoda

While modern brachiopods superficially resemble clams, they’re not actually very closely related to each other. Clams are bivalve molluscs, related to snails and squid, while brachiopods are lophophorates related to bryozoans and horseshoe worms.

Their two shell valves are also arranged very differently – while bivalve shells originate from the left and right sides of their bodies, brachiopods grow theirs on the top and bottom.

They first appear in the fossil record in the early Cambrian, about 530 million years ago, but they may have actually diverged from a tommotiid-like ancestor as far back as the late Ediacaran. Only around 300 species survive today, but during the Paleozoic they were some of the most abundant filter-feeding and reef-building animals with tens of thousands of fossil species known. Different species tended to have strict habitat and temperature preferences, and so their fossils are also useful indicators of how ancient climates changed over time.

Continue reading “Cambrian Explosion Month #31: Phylum Brachiopoda”

Cambrian Explosion Month #30: Phylum(?) Hyolitha

Hyoliths were a group of small shelled animals that first appeared in the fossil record just after the start of the Cambrian, about 536 million years ago. They had conical calcareous shells with a lid-like operculum, and some species also featured long curling spines that made them look like ice-cream cones with mammoth tusks.

They were so odd that for a long time their evolutionary relationships were unknown. They were generally accepted to be lophotrochozoans, but some studies considered them to be part of their own unique phylum while others tended to place them as being closely related to molluscs.

It wasn’t until 2017 that well-preserved soft tissue fossils revealed a tentacled feeding structure that resembled a lophophore – and hyoliths finally found their place in the lophotrochozoan family tree as close relatives of brachiopods and horseshoe worms, possibly even being a stem lineage within the brachiopod phylum.

However, this isn’t universally accepted and some recent studies continue to dispute it. The feeding organ of a different hyolith fossil has been interpreted as not being a lophophore, classifying the group as an early lophotrochozoan stem lineage, while an analysis of shell microstructure has instead suggested realigning them with molluscs. I’m grouping them with brachiopods here, but future discoveries might still make this obsolete.

Continue reading “Cambrian Explosion Month #30: Phylum(?) Hyolitha”

Cambrian Explosion Month #29: Phylum Phoronida & Early Brachiozoans

The last group we’re looking at this month are the brachiozoans, a lineage that includes modern horseshoe worms and brachiopods along with the extinct hyoliths.

Horseshoe worms, or phoronids, are represented by about 15 living species and are usually considered to be their own phylum, but some analyses classify them as a sub-group of brachiopods instead. Like other lophophorates they have a “crown” of filter-feeding tentacles around their mouths, and similarly to some bryozoans they build protective chitinous tubes around their bodies.

There are no definite body fossils of phoronids at all, although there are a few possible trace fossils of their tubes and the enigmatic fossil hederelloids might be related to them.

But some Cambrian fossils might give us a hint about their evolutionary history.

Continue reading “Cambrian Explosion Month #29: Phylum Phoronida & Early Brachiozoans”

Cambrian Explosion Month #28: Phylum …Entoprocta?

The only Cambrian fossil species that seems to be closely related to the entoprocts is Cotyledion, but there are several other enigmatic animals that have also been tentatively allied with the group as members of early stem lineages.

Continue reading “Cambrian Explosion Month #28: Phylum …Entoprocta?”

Cambrian Explosion Month #27: Phylum Ectoprocta & Phylum Entoprocta

Ectoprocts, common known as bryozoans or “moss animals”, are aquatic lophotrochozoans that usually live in colonies made up of many tiny cloned zooids. The exoskeletons they build for their colonies have a range of forms, including gelatinous blobs, chitinous branches, and calcified sheets and coral-like fronds.

They’re part of a sub-group of lophotrochozoans called lophophorates, closely related to brachiopods and horseshoe worms, and are characterized by having a ring or U-shaped “crown” of filter-feeding tentacles around their mouths.

Mineralized bryozoans have an extensive fossil record going back to the early Ordovician, about 481 million years ago, but they’re surprisingly absent from the Cambrian – with one possible exception.

Continue reading “Cambrian Explosion Month #27: Phylum Ectoprocta & Phylum Entoprocta”

Cambrian Explosion Month #26: Phylum Mollusca – Tentacle Time

Cephalopods‘ highly distinctive body plan and incredible intelligence make them some of the most charismatic marine animals. Today they’re mainly represented by the soft-bodied coleoids (octopuses, squid, and cuttlefish), with the modern giant squid and colossal squid being the largest living invertebrates. In comparison the shelled nautiluses seem like weird oddballs, but they’re actually far more typical examples of the group than their squishier cousins – as part of the conchiferan lineage the ancestors of all modern cephalopods were also shell-bearing molluscs, and for much of their evolutionary history shelled forms like ammonites and orthoceridans were extremely abundant.

The exact evolutionary relationships of cephalopods within the conchiferan family tree aren’t clear, but their closest relatives might be modern monoplacophorans and they probably descended from limpet-like “monoplacophoran-grade” ancestors in the early Cambrian. The current oldest potential cephalopod fossils come from about 522 million years ago, but the first definite cephalopods in the fossil record come from much later in the period.

Continue reading “Cambrian Explosion Month #26: Phylum Mollusca – Tentacle Time”