Platycepsion

Platycepsion wilksoni was a temnospondyl amphibian that lived during the early-to-mid Triassic (~251-242 million years ago) in what is now New South Wales, Australia.

A single partial skeleton discovered in the 1880s is the only known record of this species, and represents a juvenile that would have been around 15-20cm long (6-8″). We don’t know exactly what it would have looked like as an adult, but it was probably quite similar to other closely-related members of the brachyopid family – mostly-aquatic salamander-like animals with short but wide toothy jaws, eyes set towards the front of the head, small limbs, and paddle-like tails.

A recent re-analysis of the Platycepsion specimen found evidence of soft-tissue preservation of external gills, showing that it wasn’t just a juvenile but a true larva, a sort of temnospondyl “tadpole”.

Distinct larval stages have been found in a few other types of temnospondyls, but this is the first definite example from the stereospondyls, a major Mesozoic lineage that survived all the way into the Early Cretaceous.

Gaylordia

Gliding has convergently evolved multiple times within mammals, from the Jurassic-aged haramiyids and volaticotheres to numerous species of modern marsupials, rodents, and colugos.

And yet despite the huge diversity of gliding mammals, and their particular prevalence in tropical forests, there’s an entire continent famous for its rainforests that’s somehow completely lacking any modern examples: South America.

It’s not clear why the gliding lifestyle never took off in South America, but the continent is surprisingly devoid of any other gliding vertebrates, too. The only exceptions are a few species of flying frogs in the northwestern tropical forests around Colombia.

But back in the early Eocene, about 53-50 million years ago, there was at least one South American gliding mammal. Some fossil limb bones found in the Itaboraí Formation in southeastern Brazil look very much like those of a gliding mammal – long and thin, with a locking elbow joint, knees adapted for jumping, and flexible ankles typical of tree-climbers.

These remains haven’t been given a new scientific name, however, because there’s a good chance they belong to an already-described species. Fossils from Itaboraí are found disarticulated, broken, and with bones of multiple different species jumbled together, so most fossil mammals named from the site have been based on their more easily distinguishable teeth and jaw fragments.

The problem is matching those teeth with these bones.

Currently the best identity guess based on size is Gaylordia macrocynodonta. This mammal would have been around 30cm long (1′), about the size of a modern rat, and had distinctive large canine teeth. It used to be classified as a marsupial related to opossums, but more recent studies have found it to have actually been a marsupialiform metatherian instead, much more closely related to Pucadelphys and sparassodonts than to any modern true marsupials.

Gaylordia‘s crushing molars suggest it was carnivorous, able to crunch through bones or hard-shelled invertebrate prey. This would be a very unusual diet for a gliding mammal, since most other mammalian gliders are herbivores or omnivores – the only other known predatory examples were the volaticotheres over 110 million years earlier.

Kyhytysuka

The first definite ichthyosaur fossil found in Colombia was a single well-preserved skull, found in Early Cretaceous deposits dating to between 130 and 112 million years ago.

Although first discovered in the 1970s, this marine reptile wasn’t described until the late 1990s, at the time being named as a species of Platypterygius. But since then more pieces of the skeleton have been recovered, and the Platypterygius genus has been found to be a wastebasket taxon in need of revision, so in 2021 the Colombian ichthyosaur got a more detailed redescription and its own distinct name: Kyhytysuka sachicarum.

Kyhytysuka was a mid-sized ichthyosaur, about 5.5m long (18′) – about the size of a small modern orca – with a large head and a long robust snout. Its teeth varied in size, shape, and spacing along its jaws, with several different regions that were specialized to catch, slice, and crush its prey.

It could also open its jaws very widely, possibly up to an angle of 75°, suggesting it was able to tackle particularly large prey such as other marine reptiles. Possible soft tissue preservation around its lower jaw might also be evidence of elastic connective tissue that would have allowed its throat to expand out while swallowing big prey items.

This makes Kyhytysuka the first known example of a Cretaceous-aged ichthyosaur with an apex predator lifestyle, convergently evolving a similar ecological role to some earlier Triassic and Jurassic species.

Typhloesus

Typhloesus wellsi has been a mystery for a long time.

First discovered in the early 1970s, in the mid-Carboniferous Bear Gulch Limestone deposits (~324 million years ago) of Montana, USA, it was initially mistaken for the long-sought-after “conodont animal” due to the presence of numerous conodont teeth inside its body. But just a few years later well-preserved eel-like conodont animals were found elsewhere, and it became apparent that the conodont teeth inside Typhloesus had actually just been part of its last meal.

But if it wasn’t a conodont… then what was it?

Up to about 10cm long (4″), Typhloesus had a streamlined body with a vertical tail fin and paired “keels” along its sides. It had a mouth and a gut cavity, but no apparent anus, and it also didn’t seem to have any eyes or other sensory structures. And in the middle of its body there was something very weird – a pair of “ferrodiscus” organs, disc-shaped structures which contained high concentrations of iron but whose function was completely unknown.

This anatomy just didn’t match any other known animals, so much so that it gained the nickname of “alien goldfish”.

For the next few decades it remained a bizarre enigma, at best tentatively considered to represent an unknown lineage of some sort of metazoan that left almost no other fossil record due to being entirely soft-bodied.

But now, 50 years after its initial discovery, we might just finally have a clue about Typhloesus’ true identity.

Recently something new was discovered in some Typhloesus specimens – a radula-like feeding structure that was probably part of an eversible proboscis. This would mean that Typhloesus was a mollusc, possibly a gastropod that convergently evolved a swimming predatory lifestyle similar to modern pterotracheoids.

It’s not a definite identification yet, and even if it was a mollusc it was an incredibly strange one, with features like the ferrodiscus still lacking any explanation. But this discovery at least shows that there are still new details waiting to be found in the “alien goldfish” fossils, and gives us a start towards bringing its classification back down to earth.