Longipteryx

Longipteryx chaoyangensis, an enantiornithine from the Early Cretaceous of China, about 120 million years ago. With a body length of only around 15cm (6″), it had a long snout tipped with a few hooked teeth and feet capable of perching – features that indicate it may have lived very similarly to modern kingfishers, feeding on fish and small invertebrates in its swampy forest habitat.

The enantiornithines were a sort of “cousin” lineage to modern birds. Most had toothy jaws and clawed wings, and the wide variety in their skull shapes suggests that they were specialized for many different dietary niches. The entire group went extinct during the K-Pg mass extinction and left no living descendants, but during the Cretaceous they were the most widespread and diverse group of birds*, with fossils currently known from every continent except Antarctica.

* Depending on how you define “bird”.

Halszkaraptor

Halszkaraptor escuilliei, a dromaeosaurid (“raptor”) dinosaur from the Late Cretaceous of Mongolia (~75-71 mya). It’s known from a single near-complete skeleton and would have been about the size of a modern mallard duck, around 60cm long (2′).

It had some very odd features for a raptor, with many small sharp backwards-pointing teeth, crocodile-like sensory pits on its snout, a long flexible neck, small flipper-like arms, a relatively short tail, and a more upright body posture than its other relatives. All these traits together suggest it may have been semi-aquatic, which is a pretty big deal since the only other group of non-avian dinosaurs known to have developed adaptations for life in the water were the spinosaurids.

The fossil was originally illegally excavated by fossil poachers and was owned by private collectors for several years, but it has now been returned to science and is due to be repatriated to Mongolia. With its odd anatomy and the exact origin of the specimen being unknown, there’s some skepticism about whether Halszkaraptor represents a genuine animal or an elaborate fake chimera – but synchrotron scans of the fossil and its similarity to previously-discovered more fragmentary short-armed raptors like Mahakala suggest that it is real, and it really is that weird.

Jamaican flightless ibis

The Jamaican ibis (Xenicibis xympithecus) was a bird unique to the Caribbean island of Jamaica. One of only two known types of completely flightless ibises, it was similar in size to a chicken – probably around 75cm long (2′5″) and weighing 2kg (4.4 lbs).

It had some incredibly unusual wing anatomy, with strengthened bones, a proportionally short forearm, and the “hand” section modified into a thick club-like shape. Some remains show evidence of blunt-force injuries, suggesting these birds fought each other by swinging around their heavy wings like baseball bats.

Its bones have found in several cave deposits which are difficult to accurately date, but are likely to be somewhere between 10,000 and 2,200 years old. It’s unclear whether Xenicibis was still around when humans first colonized the island, but if so it was probably driven to extinction soon after.

Zuul

Zuul crurivastator, an ankylosaur from the Late Cretaceous of Montana, USA (~75 mya).

One of the most complete ankylosaurids ever found in North America, it’s known from a full skeleton about 6m long (20′). Much of its bony osteoderm armor is preserved in life position, along with skin impressions and the remains of keratinous scales and spike sheaths – although so far only the skull and tail have actually been fully prepared and described.

(The fuzz on this reconstruction is highly speculative, but since it’ll likely end up inaccurate anyway once of the rest of the body is fully described… why not have some fun with it?)

Its genus name was inspired by its skull’s resemblance to Zuul the Gatekeeper from the 1984 movie Ghostbusters, while its species name translates to “destroyer of shins” in reference to its especially large tail club.

Mirischia

Mirischia asymmetrica, a theropod dinosaur from the Early Cretaceous of Brazil (~112-99 mya). Although known only from its hips and a few other partial bones, these pieces were so well-preserved that it was given a genus name that translates to “wonderful pelvis”.

In life it would have been about 2m long (6′6″), but since the known fossil represents a subadult its full-grown size may have been a little bit larger. It was probably a member of the compsognathids, closely related to Compsognathus and Aristosuchus – which would make it the only representative of that family currently known from the Americas.

The ischium bones of Mirischia’s pelvis were oddly asymmetrical, hence the species name ‘asymmetrica’, with one side featuring a hole and the other side only having a notch in the same position. The fossil specimen also had thin-walled bird-like bones, and soft-tissue impressions of intestines and a posterior air sac.

Turtle-jawed moa-nalo

The turtle-jawed moa-nalo (Chelychelynechen quassus) was a large flightless goose-like duck from the Hawaiian island of Kaua‘i. About 90cm tall (3′) and weighing around 7kg (15lbs), these birds and their relatives were descended from dabbling ducks and existed on most of the larger Hawaiian islands for the last 3 million years or so – before going extinct around 1000 years ago following the arrival of Polynesian settlers.

Chelychelynechen had an unusually-shaped bill, tall and broad with vertically-oriented nostrils, convergently similar to the beak of a turtle. It would have occupied the same sort of ecological niche as giant tortoises on other islands, filling the role of large herbivore in the absence of mammals.

Herrerasaurus

One of the earliest known dinosaurs, Herrerasaurus lived during the Late Triassic (~231 mya) in what is now Argentina, South America. It was a fairly lightly-built bipedal carnivore, with the largest specimens reaching sizes of just over 5m long (16′4″).

The exact classification of herrerasaurids is still somewhat unclear, with different analyses putting them in different positions on the early dinosaurian family tree. They’re generally considered to at least be closely related to basal theropods – but a recent analysis that reshuffles dinosaur relationships suggests their resemblance to the theropods might be a result of convergent evolution, with them being the sister group to sauropods instead.

Utahraptor

Utahraptor ostrommaysorum lived during the Early Cretaceous (~130-124 mya) in Utah, USA, and was the largest known dromaeosaurid. Reaching lengths of around 6m long (20′), it’s often compared in size to the fictional raptors of Jurassic Park.

Recent discoveries show it had some weird proportions compared to its relatives – a thick stocky body, chunky legs, smaller arms, a shorter and more flexible tail, and a large deep skull with an oddly curved lower jaw.

But we still don’t know very much about it… yet.

There’s a huge slab of rock full of Utahraptor fossils just waiting to be extracted and studied. There are at least six raptors in there ranging from babies to adults, hinting at the presence of a family group or even pack hunting behavior, and potentially other animals and new discoveries too – but the main roadblock for this project is lack of funding.

The paleontologists involved have turned to crowdfunding to attempt to raise enough money for essential equipment and the services of a professional fossil preparator, but they’re still only at about 10% of their goal.

So this first week of April is #UtahraptorWeek in the paleontology community, raising awareness of this fascinating giant raptor and how close we are to finding out so much more about it. Spread the word, and if you’re able to please consider helping out the Utahraptor Project on GoFundMe.

Unsolved Paleo Mysteries Month #18 – The Biggest Beefy Boys

In 1878, during the Bone Wars of American paleontology, Edward Drinker Cope published a description of a partial sauropod vertebra and femur from the Late Jurassic of Colorado (~150 mya). He classified it as a new species of the diplodocoid genus Amphicoelias (which he had named earlier that same year), designating it as Amphicoelias fragillimus in reference to the bone’s poor condition and incredibly fragile structure.

But what set this fragmentary find apart was its sheer size. The partial back vertebra measured around 1.5m tall (5′), with estimates of its full height anywhere up to 2.7m (8′10″) – twice the size of the same bone in Diplodocus, and far larger than anything else known.

Obviously its very difficult to accurately estimate the full body size of an animal from a single broken bone, but plenty of attempts have been made anyway, producing lengths of up to 60m (197′). For comparison, the largest living animal the blue whale reaches lengths of around 33m (108′).

Around the time of Cope’s death in 1897, his massive fossil collection was sent to the American Museum of Natural History, and the A. fragillimus vertebra was entered into their catalog

Only to vanish, never to be seen again.

Multiple searches through the collection have found no trace of it, and there’s speculation that at some point the fragile bone may have crumbled entirely into pieces and been thrown away. No other material of A. fragillimus has ever been found in the ~140 years since its description, despite searches of the area where it was originally discovered, leading to claims of the entire specimen being a hoax – suggestions that Cope exaggerated or typoed his measurements in his rush to outdo his rival Othniel Charles Marsh.

Without that paleontological holy grail of finding the lost fossil or a new specimen, we just don’t know how big that bone truly was, or whether A. fragillimus was a living kaiju or a much more “normal-sized” sauropod. There’s even been some speculation of it being proportioned more like a rebbachisaur, with tall “sailback” vertebrae.

Except

In a surprise plot twist, there is another.

An absolutely enormous neck vertebra hints at the existence of other gigantic mega-sauropods. We still don’t have enough remains to know what the heck was going on with these animals – how did they even manage to get so huge? were they rare individuals who lived long enough to grow into “super-adults”? – but the prospect of perhaps one day finally validating A. fragillimus’ enormous size is exciting.


My version of Amphicoelias fragillimus here works out to about 50m long (164′), although it might be closer to 60m long with a more horizontal neck posture. Its proportions are mainly based on a mixture of Diplodocus, Supersaurus, and Barosaurus, with slightly taller neural spines raising its back profile a bit and some big fat deposits thickening up its tail.

Unsolved Paleo Mysteries Month #16 – Strange Snoots 2: Oddball Ornithischians

Those extinct horses weren’t the only ancient creatures with unexplained noses. Some dinosaurs had equally weird things going on with their snouts – and while hadrosaurs’ big honkin’ snoots are fairly well-known, there were other ornithischians with their own bizarre nasal anatomy.


An illustration of the skull of an extinct horned dinosaur, showing the unusually large nasal cavity. Below is a reconstruction of the dinosaur's head in life.
Triceratops horridus skull and head reconstruction

Many ceratopsids had an enormous nasal opening forming a giant bony “window” through their snout, with the chasmosaurines like the famous Triceratops having additional bony projections and hollowed regions within these holes. They probably supported some huge elaborate cartilage structures in life, but what they were for is still a mystery. They may have helped with heat dissipation or moisture conservation, aided sound production, provided a highly sensitive sense of smell, housed a vomeronasal organ, held part of an air-filled pneumatic system… or, getting more speculative, possibly even some sort of inflatable nasal display structure.


An illustration of the skull of an extinct armored dinosaur, showing the multiple holes inside the nasal cavity. Below is a reconstruction of the dinosaur's head in life.
Minotaurasaurus ramachandrani skull and head reconstruction

Some ankylosaurids, meanwhile, went with multiple holes instead. Minotaurasaurus here had two additional openings around its nostrils, and Pinacosaurus could have up to five – the purpose of which is unknown. Many ankylosaurs also had forward-facing nostrils (a rare trait in archosaurs) and incredibly complex looping airways through their skulls. These may have allowed for mammal-like “air conditioning”, regulating the heat and moisture content of each breath, or perhaps enhanced their sense of smell or served some sort of resonance chamber function. Or, again, maybe even nose balloons.

Also floofy ankylosaur because I can.