Gaylordia

Gliding has convergently evolved multiple times within mammals, from the Jurassic-aged haramiyids and volaticotheres to numerous species of modern marsupials, rodents, and colugos.

And yet despite the huge diversity of gliding mammals, and their particular prevalence in tropical forests, there’s an entire continent famous for its rainforests that’s somehow completely lacking any modern examples: South America.

It’s not clear why the gliding lifestyle never took off in South America, but the continent is surprisingly devoid of any other gliding vertebrates, too. The only exceptions are a few species of flying frogs in the northwestern tropical forests around Colombia.

But back in the early Eocene, about 53-50 million years ago, there was at least one South American gliding mammal. Some fossil limb bones found in the Itaboraí Formation in southeastern Brazil look very much like those of a gliding mammal – long and thin, with a locking elbow joint, knees adapted for jumping, and flexible ankles typical of tree-climbers.

These remains haven’t been given a new scientific name, however, because there’s a good chance they belong to an already-described species. Fossils from Itaboraí are found disarticulated, broken, and with bones of multiple different species jumbled together, so most fossil mammals named from the site have been based on their more easily distinguishable teeth and jaw fragments.

The problem is matching those teeth with these bones.

Currently the best identity guess based on size is Gaylordia macrocynodonta. This mammal would have been around 30cm long (1′), about the size of a modern rat, and had distinctive large canine teeth. It used to be classified as a marsupial related to opossums, but more recent studies have found it to have actually been a marsupialiform metatherian instead, much more closely related to Pucadelphys and sparassodonts than to any modern true marsupials.

Gaylordia‘s crushing molars suggest it was carnivorous, able to crunch through bones or hard-shelled invertebrate prey. This would be a very unusual diet for a gliding mammal, since most other mammalian gliders are herbivores or omnivores – the only other known predatory examples were the volaticotheres over 110 million years earlier.

Coelurosauravus

Remarkably similar-looking gliding reptiles have appeared multiple different times over the group’s evolutionary history, including the modern Draco – and despite being unrelated to each other almost all of them have achieved this in the exact same way, supporting their wing membranes on extremely elongated rib bones.

…Except for the weigeltisaurids.

These early members of the neodiapsid lineage were the very first vertebrates known to have experimented with gliding, all the way back in the late Permian period 260-252 million years ago. And while they superficially resembled all the later rib-gliders, their wings were actually something never seen before or since in a gliding reptile.

Basically, these animals were the closest that Earth life ever came to legitimately evolving a dragon.

Coelurosauravus elivensis here was a weigeltisaurid living in what is now Madagascar, which at the time was part of southern Pangaea. About 40cm long (1’4″), its body was adapted for a life climbing and gliding around in the treetops, with pneumatized air spaces lightening its bones and long slender limbs similar to those of modern tree-climbing lizards.

Its large wings were formed from around 30 pairs of long hollow rod-shaped bones extending out from the sides of its belly. These flexible structures could furl and unfurl with a motion like a foldable fan, and are thought to have been highly modified from osteoderms in the skin, creating an entirely new part of its skeleton. 

Towards the front of the wing the rods were arranged in several closely-packed “bundles”, and one specimen of Coelurosauravus preserves an impression of what seems to be the outline of the wing membrane’s leading edge – showing a stiffened pointed shape resembling the alula of a bird wing, which may have served a similar aerodynamic stabilization function.

From fig 2 in Schaumberg, G. et al (2007). New information on the anatomy of the Late Permian gliding reptile Coelurosauravus. Paläontologische Zeitschrift 81, 160–173. https://doi.org/10.1007/BF02988390

But aside from the wings, the most striking feature of weigeltisaurids were their heads. Their skulls featured large crest-like frills resembling those of chameleons and ceratopsid dinosaurs, and their edges were adorned with prominent bumps and spikes. These were probably used for visual display and might have been a sexually dimorphic feature, with males having larger spikier crests than females. The crests may also have anchored large powerful jaw muscles, giving weigeltisaurids a wider gape and faster bite speed, helping them to snap up their fast-moving insect prey.

Month of Mesozoic Mammals #16: So Many Gliders

Maiopatagium

The haramiyidan featured yesterday was a ground-dwelling animal, but most others in the group were actually highly adapted for tree-climbing. They were very squirrel-like in appearance, with grasping hands and feet and tails that may have been prehensile – and some took this lifestyle even further, becoming specialized gliders.

Living during the Late Jurassic of China (157-163 mya), Maiopatagium is one of at least four known gliding haramiyidans. It was about 25cm long (10″), around half of which was its long tail, and had a gliding membrane extending between its wrists and ankles. The proportions of its hands and feet were very similar to modern colugos and the feet of bats, which has been interpreted as evidence of the same sort of upside-down roosting behavior.

Its close relative Vilevolodon had rodent-like teeth highly adapted for crushing and grinding, suggesting these haramiyidans were herbivores feeding mainly on seeds and soft plant matter.

And these gliding haramiyidans also contribute to the confusing classification of haramiyidans – because although Megaconus’ anatomy suggested they might be mammaliaformes, studies of another glider, Arboroharamiya, give a very different result. Its ear bones and jaw show the characteristics of true members of Mammalia, supporting the hypothesis that haramiyidans were actually close relatives (or ancestral to) the multituberculates.

Month of Mesozoic Mammals #11: Getting Airborne

Volaticotherium

One of the earliest major branches of the theriiformes were the eutriconodonts. First appearing in the fossil record in the Early Jurassic, about 190 million years ago, these mammals were a highly successful group that adapted to a variety of different niches and lasted up until nearly the end of the Cretaceous.

Their exact relationships to other theriiformes are a little uncertain, with it being unclear whether they split off before or after the multituberculates (another major group featured later this month).

Volaticotherium is known from the Middle Jurassic of China (165-161 mya), and was the first gliding Mesozoic mammal to be discovered (although we now know about quite a few more). It was part of a branch of the eutriconodonts known as the volaticotherians, a widespread lineage which ranged through most of the Jurassic period and into the mid-Cretaceous.

Measuring about 26cm long (10″), or about 14cm (5.5″) excluding the tail, it’s known from a mostly complete skeleton with impressions of fur and skin. A gliding membrane extended from its hands to its hindlimbs and the base of its tail, its feet had grasping toes, and its tail was flattened to create an airfoil-like shape.

It had sharp slicing teeth, indicating a carnivorous or insectivorous diet – unusual since most other known gliding mammals are predominantly herbivores.

Potanichthys

Potanichthys xingyiensis, a fish from the Middle Triassic of China, living around 235-242 million years ago.Measuring about 15cm long (6″), it was one of the oldest known fish capable of aerial gliding – possessing a “four-winged” body plan with enlarged pectoral and pelvic fins, and an asymmetrical tail with a long lower lobe. It was also almost completely scale-less, which may have helped to reduce drag and make it more aerodynamic.

Despite the similar appearance it had no close relation to modern flyingfishes, and was instead a result of convergent evolution in a completely different lineage of the ray-finned fishes.

Unsolved Paleo Mysteries Month #19 – Mesozoic Maritime Mammal Molars

Icthyoconodon jaworowskorum was a member of the volaticotherians, a group of eutriconodonts most famous for featuring the earliest known gliding mammal. Living during the Early Cretaceous of Morocco (~145-140 mya), it’s known only from a few isolated teeth.

Based on the measurements of the teeth it was probably one of the larger eutriconodonts, close in size to Jugulator. I can’t find any body size estimates, but it may have have a total length of around 50-60cm (20-24″).

Plenty of fossil mammals are known solely from teeth, but what’s most interesting about this one is that its remains were found in coastal marine deposits without any signs of degradation or transport damage by water currents. This indicates the animal probably died at sea very close to the location where it was preserved.

A few other eutriconodonts are now known to have been semi-aquatic, so Ichthyocondon might have been adapted to a similar lifestyle, making it one of the earliest known marine mammals. Another potential explanation is that it was a Volaticotherium-like glider that got blown out to sea.

As with many of this month’s paleontological mysteries, we need some more substantial fossil remains to know for sure. I’ve reconstructed it here as both main possibilities, as an otter-like semi-aquatic animal and as a patagium-bearing glider.