Tridenaspis

Although the only surviving agnathans in modern times are the lampreys and hagfish, back in the early-to-mid-Paleozoic these “jawless fish” were much more diverse. Many of them were heavily armored with large bony head shields – a feature eventually inherited by early jawed fish like the placoderms – which protected their heads, gills, and some of their internal organs.

And some of the oddest-looking of these armored agnathans was a lineage known as the galeaspids.

Known from southern China, Tibet, and Vietnam, these small fish were bottom-dwellers living in the shallow waters of lagoons and river deltas. Their most distinctive feature was a single large opening on the upper side of their head shields – and despite looking like a particularly goofy mouth this hole was actually a nostril, used for both a sense of smell and as a water intake for their gills. The actual mouth and the gill openings were on the underside of the head.

While early galeaspids had rounded head shields, later forms developed some more unusual shapes, with long spines sticking out to each side and pointed or spatula-shaped snouts.

Tridenaspis magnoculus here lived during the early Devonian in Southwest China, about 407-393 million years ago, and was only about 5cm long (2″). It wasn’t the most extremely pointy of its kind, but still had a weird kite-shaped head shield, a long vertical slit-shaped nostril opening, and rather large upwards-facing eyes.

Groenlandaspis

The armor-headed placoderms were the dominant fish during the Devonian period, evolving a wonderfully diverse range of shapes and sizes, and occupying ecological niches in both marine and freshwater habitats.

Groenlandaspis antarctica here lived during the mid-to-late Devonian, about 383 million years ago, in the Oates Land region of Antarctica – at that time located further north than it is today, with the local climate being warm and subtropical.

It was a moderately-sized river-dwelling placoderm, around 50cm long (1’8″), and its bony armor formed a sort of pyramid shape with wing-like projections at its sides, a structure that would have acted as a hydrofoil and made it an efficient swimmer. Most of the armor plates were rigidly fused together, except for a hinge point between its head and thorax that allowed it to open its jaws, but unlike its more famous relative Dunkleosteus it couldn’t gape its mouth open particularly wide. It may have been a bottom-feeder, grubbing around in muddy riverbeds and using its small but strong jaws to crush hard-shelled prey.

Various other species of the Groenlandaspis genus have been found all around the world, but there’s something incredibly rare and special about Groenlandaspis antarctica in particular:

We actually know what color it was.

Preserved pigment cells in its fossils indicate that it was red on top and silvery-white on its underside in a countershaded pattern, camouflaging it in the murky silty waters of the ancient Antarctic rivers.

…And also made it look a bit like a prehistoric goldfish.

Weird Heads Month #31: What Even Is This Fish

For the final entry in this series, let’s take a look at a modern weird-headed species – and where better to find some of the strangest and most unique-looking animals alive today than the deep sea?

Malacosteus, also known as the stoplight loosejaw, is a 25cm long (10″) genus of dragonfish found at depths of over 500m (1640′) in oceans all around the world, with the exception of the Mediterranean and polar waters. Two different species are currently recognized, with Malacosteus niger here known from just below the Arctic Circle down to the southern reaches of the subtropics, and Malacosteus australis ranging from there to around 45°S, and up towards the equator in the Indian Ocean.

And there’s a lot to unpack here with the anatomy of this one.

First of all, there’s the fact that its entire head can hinge away from its body, gaping enormous jaws with long fang-like teeth.

The bottom of its lower jaw has no skin membrane connecting the two sides, attached to the rest of its bizarre head only by the hinges and a single exposed muscle, reducing water resistance so it can shoot its trap-jaws out extra fast to snare prey.

Diagram showing how the stoplight loosejaw's jaw parts articulate.
From Kenaley, C. P. (2012). Exploring feeding behaviour in deep-sea dragonfishes (Teleostei: Stomiidae): jaw biomechanics and functional significance of a loosejaw. Biological Journal of the Linnean Society, 106(1), 224-240. doi.org/10.1111/j.1095-8312.2012.01854.x

Once it catches something it retracts its head, and several sets of pharyngeal teeth further back grab hold of its prey and direct it down its throat.

(Let me remind you that this isn’t an early April Fools joke. This thing is completely real.)

In addition to all that anatomical weirdness, it’s also one of the only deep-sea fish that can both see and produce red-colored light. Most creatures living at that depth have lost the ability to see red since that frequency doesn’t penetrate so far down through water, but the stoplight loosejaw has evolved to take advantage of that by using bioluminescent red light as its own personal night vision goggles.

Using large red photophores under each eye, it can shine a spotlight out ahead of itself and see other deep-sea animals all clearly lit up, while remaining completely invisible to both them and any nearby larger predators. It’s able to perceive the color red thanks to a pigment in its eyes modified from chlorophyll, a visual setup unique to this fish and not known from any other vertebrate.

It also has a smaller green photophore further down on its head – inspiring its common name thanks to the resemblance to traffic lights – and many smaller blue and white ones over its head and body.

So, with its highly specialized jaws and ability to see things other deep-sea animals can’t, the stoplight loosejaw must be hunting something pretty impressive, right?

And as it turns out, it eats… plankton.

The vast majority of its diet appears to be copepods, small zooplanktoic crustaceans that are incredibly common in the waters the loosejaw inhabits. It may simply be “snacking” on such a convenient food source in-between rare encounters with larger prey – but it may also be getting the chlorophyll-based pigment needed for its night vision from eating them.

Weird Heads Month #11: Scissor-Toothed “Sharks”

The eugeneodontidans were a group of cartilaginous fish which convergently evolved to resemble sharks but were much closer related to modern chimaeras. Due to their cartilage skeletons usually little more than their teeth are found as fossils, and for a long time their ecology and life appearance has been poorly understood because of just how weird those teeth were.

These fish had unique “tooth whorls” in their lower jaws, and the most famous member of the group is probably Helicoprion, with the exact anatomical placement of its buzzsaw-whorl only being properly figured out in 2013.

But another eugeneodontidan named Edestus was equally strange.

Living during the late Carboniferous, about 306-299 million years ago, Edestus giganteus was the largest species in the genus, reaching estimated lengths of up to 6m (19’8″), similar in size to a modern orca or a particularly large white shark.

Let’s take a closer peek at that mouth.

A close up drawing of the head of the extinct shark-like fish Edestus. It has a single central row of large teeth in its upper and lower jaws.

Yes, that’s a single central row of teeth in both its upper and lower jaws.

Edestus‘ whorls grew in curving “banana-shaped” brackets that resembled an enormous pair of pinking shears, with new teeth being added on at the back and the oldest teeth occasionally being ejected off from the front. How this jaw arrangement worked was a longstanding paleontological mystery, with various bizarre ideas being proposed over the years – until a particularly well-preserved skull was analyzed in early 2019, revealing a two-jointed system in its lower jaw that allowed it to move its tooth brackets quickly back and forth, using a “snap-and-slice” motion to grab hold of prey like fish and soft-bodied cephalopods and cut them in half.

Along with body impressions from other related eugeneodontidans like Fadenia, showing a shark-like tail and a complete lack of rear fins, we now have a much better picture of what this bizarre fish probably looked like.

Holopterygius

Coelacanths are represented today by just two surviving species, one in East Africa and one in Indonesia, both very similar in appearance and ecology to each other.

For a long time their lineage was thought to be all “living fossils“, retaining the same basic body plan for the last 400 million years – but more recent discoveries have revealed that these fish were actually much more diverse over the course of their evolutionary history.

Holopterygius nudus was a fairly early member of the group, living during the mid-Devonian about 385 million years ago. The only known fossil specimen was discovered in Germany in the 1970s, but it was originally thought to be a different type of fish entirely and wasn’t identified as being a coelacanth until over 30 years later.

And compared to its living relatives it was tiny, just 7cm long (2.75″), with a distinctive tapering eel-like tail. Its convergent close resemblance to modern cusk-eels suggest it may have occupied a similar ecological niche, living near the sea floor and hiding in tight spaces like crevices and burrows.

Rostropycnodus

The extinct pycnodonts were a group of mostly circular-shaped fish, convergently similar to modern reef fish like marine angelfish or butterflyfish – but some of them developed much much weirder appearances.

Rostropycnodus gayeti here was one of the especially odd-looking forms, known from the mid-Cretaceous of Lebanon about 100-95 million years ago.

It had an elongated snout with the upper jaw longer than the lower, a pointed spiky horn on its forehead, and a massive pectoral region that bulged out at the front of its body. Meanwhile its pectoral fins were modified into big immobile spines, and its pelvic fins were highly reduced and positioned beneath another set of large spines.

And it was tiny, only about 5.5cm long ~(2″).

It would have been a slow swimmer, relying on its spikiness to deter larger predators, and it’s currently unclear what it ate with its unusual spiny snout. Many other pycnodonts had mouths full of round crushing teeth, but Rostropycnodus’ jaws seem to have been mostly toothless – so perhaps it used its snout to probe around in cracks or sediment for small soft-bodied invertebrates.

Falcatus

Falcatus falcatus, a 30cm long (12″) cartilaginous fish from the mid-Carboniferous of Montana, USA (~326-318 mya).

Although it looked very shark-like it was actually much more closely related to modern chimaeras, and its most distinctive feature was the forward-pointing “unicorn horn” spine just behind its head – a sexually dimorphic structure formed from a highly modified dorsal fin, found only on mature males.

The spine’s function is unknown for certain, but it may have been a sort of clasper involved in courtship and mating, since one fossil seems to preserve a female in the act of biting onto it. Some of its close relatives like Damocles and Stethacanthus also had similarly weird dorsal fins, so whatever these fish were actually doing with these structures it must have been a fairly successful strategy.

Falcatus lived out in the open ocean, with proportionally big eyes giving it good vision in deep dark water, and its large symmetrical tail fin suggests it was a fast maneuverable swimmer that actively chased after small prey. Numerous fossils have been found together, which may also indicate schooling behavior.

Although definite fossils of falcatids are only known from the Carboniferous, recently there’s been some possible evidence of them surviving for much much longer. A few isolated fossil teeth from Europe suggest that some of these fish may have persisted for at least another 180 million years into the Early Cretaceous, living in isolated deep water refugia environments in a similar situation to the modern coelacanth – making them fossils of what would have been “living fossils” at the time!

Almost-Living Fossils Month #27 – Those Giant Sharks

For the final entry this month, let’s look at a particularly famous lineage: the megatooth sharks.

More formally known as the otodontids, the megatooths were a group of sharks that first appeared in the Early Cretaceous, about 115 million years ago. They were a branch of the mackerel shark lineage – making them evolutionary cousins to a variety of modern species like the great white shark, basking shark, and goblin shark – and had a near-worldwide distribution, with fossils known from every continent except Antarctica.

Early otodontids in the Cretaceous were usually small-to-medium sized, around 2-3m long (6′6″-9′10″), but after surviving through the end-Cretaceous extinction they took over the marine apex predator niches left vacant by the vanished mosasaurs and plesiosaurs and began to get very big. Species of Otodus in the Paleocene and early Eocene may have reached sizes of at least 9m long (29′6″), twice the size of an average great white.

Their teeth gradually became proportionally larger in their jaws, losing their side cusplets and taking on a chunky triangular shape with finely serrated edges. This gave them an incredibly powerful bite force, and they would have probably fed on pretty much any other large marine vertebrates they could catch, including bony fish, smaller sharks, turtles, and early penguins – and then when marine mammals like early whales and sirenians appeared in the mid-Eocene, they adapted to this new food source too.

By the Late Eocene (~35 mya) the Otudus lineage was still developing even chunkier and more serrated teeth, and by the Early Oligocene (~28 mya) Otodus chubutensis reached even larger sizes rivaling the modern whale shark at around 12m long (39′4″).

But the most well-known member of the group evolved just a few million years later in the Early Miocene (~23 mya) – the absolutely enormous “megalodon”.

There’s some debate about what genus name megalodon should be assigned to – at the moment its formal name is usually considered to be Otodus megalodon, but some paleontologists place it in Carcharocles or Megaselachus or Procarcharodon instead. Whatever you want to call it, it was a ridiculously big shark – size estimates range up to about 18m (59′), which would make it potentially the largest fish to have ever lived.

Since these huge sharks are all known mostly from just their fossilized teeth (and occasionally a few exceptionally preserved cartilaginous vertebrae), it’s hard to tell what they actually would have looked like in life. Megalodon is frequently depicted as simply a scaled-up great white, but it’s unclear how accurate that really is – it may have convergently resembled a giant great white due to their similar predatory habits, or it could have had a build more like the larger basking shark or whale shark.

A preserved megalodon skull has actually been found, but no studies of it have been published yet. It might give us some important clues about the head shape of this giant shark, but until there’s some official information all we can do is continue to speculate.

Megalodon was a highly successful species, living all around the world in warm and temperate ocean waters for around 20 million years. Its teeth have been found in association with the bones of many different smaller whale species, suggesting it frequently ate marine mammals, and the patterns of the bite marks indicate it probably used different hunting strategies than modern great whites. Some whales seem to have been heavily rammed and then had their ribcages bitten into, targeting their hearts and lungs, while others had their flippers ripped off to immobilize them.

During the Pliocene (~5-2.6 mya), however, megalodon began to struggle. Cooling oceans and changes in the abundance of the marine mammals it ate began to restrict its available prey. Baleen whales started to grow too large for it to effectively hunt, since it preferred to target smaller species, and they also shifted their ranges towards the cold polar waters that megalodon didn’t seem to be able to survive in. In addition, dropping sea levels may have destroyed most of its shallow warm-water nursery sites, making it harder for newborn young to survive into adulthood.

By the end of the Pliocene, somewhere between 3.6 and 2.6 million years ago, megalodon went completely extinct. Despite some very pseudoscientific claims, there’s definitely no living “Meg” out there anymore – if there was, we’d be constantly finding freshly-shed teeth and whales with giant bite marks on their bodies!

Almost-Living Fossils Month #21 – More Sharks

First appearing in the Early Permian, about 290 million years ago, the synechodontiformes were an early branch of the neoselachian lineage of cartilaginous fish, slightly closer related to living sharks and rays than to the hybodontiformes featured earlier this month.

They originated in the Paleo-Tethys Ocean and survived through the devastating end-Permian “Great Dying” mass extinction (~252 mya), then went on to quickly spread around most of the world and also survive through the Triassic-Jurassic extinction (~201 mya). During the Jurassic and Cretaceous they became quite common and diverse, taking over some of the niches previously occupied by the hybodontiformes and adapting to a range of marine environments from shallow coastal waters to open ocean.

Most known synechodontiform fossil remains are just their teeth, since cartilage skeletons don’t preserve very often, but there are a few rare body fossils that show they were varied in appearance with differing arrangements of dorsal fins and spines.

Paraorthacodus jurensis here was one of the species known from the Late Jurassic of Germany (~155-150 mya). Reaching lengths of at least 1.3m (4′2″), it had only one dorsal fin far back on its body, along with large pectoral fins and a low asymmetrical tail that gave it a superficial resemblance to the modern sixgill sharks.

Its teeth were close in shape to those of sand tiger sharks, and it may have had a similar lifestyle opportunistically hunting prey just above the sea floor in the waters around the continental shelf and slope. Remains of a chimaera in the mouth and gut contents of a couple of Paraorthacodus jurensis fossils suggest that smaller cartilaginous fish were fairly common elements of its diet.

A few synechodontiformes managed to survive the end-Cretaceous extinction 66 million years ago – but while the ancestors of moderns sharks thrived in the Cenozoic, the synechodontiformes never recovered anything close to their Mesozoic levels of success and instead began to decline.

The last known synechodontiforme was a currently-unnamed member of the Paraorthacodus genus, hanging on in the waters around Antarctica in the Late Eocene (~37 mya). If they managed to survive past that time it probably wasn’t for very much longer, and it’s likely they finally disappeared during another extinction event at the Eocene-Oligocene boundary.

Almost-Living Fossils Month #09 – Horned Sharks

All modern species of sharks and rays are part of a single lineage of cartilaginous fish known as neoselachians, and the closest evolutionary “cousins” to all of them were the hybodontiformes.

First appearing way back during the Devonian, about 400 million years ago, these early sharks were widespread around the world and incredibly successful as a group, living in both marine and freshwater environments.

Although due to their cartilaginous skeletons hybodontiformes are mostly known from fossilized teeth, there are still some complete specimens known that show us their overall body shape. They had two dorsal fins, each with a long spine in front, and an asymmetrically-shaped tail. Some of them also had small horn-like spines on their heads – this seems to be a sexually dimorphic trait, since the ones with “horns” also have claspers which show they were males – and they generally had powerful jaws with teeth specialized for crushing.

They were probably fairly slow swimmers most of the time, but would have still been capable of occasional bursts of higher speed, and various species were adapted to a wide range of food sources. Some had wider flatter teeth for cracking open hard-shelled seafloor invertebrates, and others were more opportunistic hunters that would have crunched on pretty much anything they could fit in their mouths.

Hybodontiformes were the dominant type of shark around the world before the end-Permian “Great Dying” mass extinction (~252 mya), and then went on to recover and flourish once again up until the mid-Jurassic.

Hybodus hauffianus was one of the Early Jurassic species, living around 183 million years ago in Europe. About 2m long (6′6″), it had two different types of teeth in its mouth – sharper ones in the front and flatter ones in the back – suggesting it was a generalist predator eating whatever it could catch. We do know its diet at least included the fast-swimming squid-like belemnites, since some fossils preserve clusters of their internal hard skeletons in Hybodus’ stomach region.

Towards the end of the Jurassic neoselachians began to diversify and take over most of the marine shark ecological niches, and the hybodontiformes became increasingly restricted to freshwater. During the Cretaceous they continued to do fairly well in those environments, but most of them still disappeared around the time of the end-Cretaceous extinction (~66 mya). Since most other sharks weren’t actually particularly affected by the extinction event, it’s not clear whether the hybodontiformes were more vulnerable for some reason or whether it was the ongoing competition from neoselachians that drove the majority of them extinct at that time.

Still, a few of them did seem to make it through to the Cenozoic, although they were absent from the fossil record until the Miocene. Freshwater deposits in Sri Lanka have evidence of a late-surviving member of the group living perhaps as recently as 5 million years ago – so they would have only gone completely extinct sometime after that, and we probably missed seeing them alive by only a few million years at most.