Almost-Living Fossils Month #09 – Horned Sharks

All modern species of sharks and rays are part of a single lineage of cartilaginous fish known as neoselachians, and the closest evolutionary “cousins” to all of them were the hybodontiformes.

First appearing way back during the Devonian, about 400 million years ago, these early sharks were widespread around the world and incredibly successful as a group, living in both marine and freshwater environments.

Although due to their cartilaginous skeletons hybodontiformes are mostly known from fossilized teeth, there are still some complete specimens known that show us their overall body shape. They had two dorsal fins, each with a long spine in front, and an asymmetrically-shaped tail. Some of them also had small horn-like spines on their heads – this seems to be a sexually dimorphic trait, since the ones with “horns” also have claspers which show they were males – and they generally had powerful jaws with teeth specialized for crushing.

They were probably fairly slow swimmers most of the time, but would have still been capable of occasional bursts of higher speed, and various species were adapted to a wide range of food sources. Some had wider flatter teeth for cracking open hard-shelled seafloor invertebrates, and others were more opportunistic hunters that would have crunched on pretty much anything they could fit in their mouths.

Hybodontiformes were the dominant type of shark around the world before the end-Permian “Great Dying” mass extinction (~252 mya), and then went on to recover and flourish once again up until the mid-Jurassic.

Hybodus hauffianus was one of the Early Jurassic species, living around 183 million years ago in Europe. About 2m long (6′6″), it had two different types of teeth in its mouth – sharper ones in the front and flatter ones in the back – suggesting it was a generalist predator eating whatever it could catch. We do know its diet at least included the fast-swimming squid-like belemnites, since some fossils preserve clusters of their internal hard skeletons in Hybodus’ stomach region.

Towards the end of the Jurassic neoselachians began to diversify and take over most of the marine shark ecological niches, and the hybodontiformes became increasingly restricted to freshwater. During the Cretaceous they continued to do fairly well in those environments, but most of them still disappeared around the time of the end-Cretaceous extinction (~66 mya). Since most other sharks weren’t actually particularly affected by the extinction event, it’s not clear whether the hybodontiformes were more vulnerable for some reason or whether it was the ongoing competition from neoselachians that drove the majority of them extinct at that time.

Still, a few of them did seem to make it through to the Cenozoic, although they were absent from the fossil record until the Miocene. Freshwater deposits in Sri Lanka have evidence of a late-surviving member of the group living perhaps as recently as 5 million years ago – so they would have only gone completely extinct sometime after that, and we probably missed seeing them alive by only a few million years at most.

Almost-Living Fossils Month #06 – Circle Fish

Pycnodonts were a group of fish that originated in the western Tethys Sea during the Late Triassic (~215 mya), and later spread to most of the rest of the world with the exception of Antarctica and Australia. Ranging in size from a few centimeters to around 2m (6′6″), they had deep vertically-flattened bodies and almost circular silhouettes. Although they somewhat resembled modern marine angelfish or butterflyfish, they weren’t actually very closely related, instead being part of a much older branch of neopterygian fish.

They inhabited a range of shallow coastal waters from marine to freshwater environments, and most of them had jaws full of round flat teeth used to crush hard-shelled prey – but some may have been herbivorous grazers similar to parrotfish, and one lineage even became sharp-toothed piranha-like predators.

Some also developed quite elaborate appearances, such as Hensodon spinosus here. Living during the peak of the pycnodonts’ diversity in the mid-to-late Cretaceous, its fossils are known from Lebanon and date to about 100-95 million years ago.

It was only about 7cm long (2.75″) but it was bristling with various small spines and large “horns”, with different specimens showing two distinct arrangements. One type had double-pronged forward-facing horns, while the other had two horns one after the other – this may be evidence of sexual dimorphism, with the “bull horned” form thought to be male and the “rhino horned” form thought to be female.

Hensodon was also probably stripy in life, since one fossil preserves faint evidence of a light-and-dark stripe pattern on its dorsal fin.

Only a few pycnodonts survived into the Cenozoic, and their last appearance in the fossil record was in the mid-Eocene (~40 mya). Since this was at about the same time that more modern types of reef fish began to evolve, it’s likely that a combination of new competition and changing climate conditions resulted in the last pycnodonts going extinct by the end of the Eocene around 33 million years ago.

Almost-Living Fossils Month #02 – The Saber-Toothed “Herring”

First appearing in the mid-Cretaceous, about 113 million years ago, Enchodus was a small-to-medium-sized genus of predatory fish. Different species ranged from a few centimeters to up to 1.5m in length (4′11″), with Enchodus gladiolus here being an averaged-sized example at about 60cmlong (2′).

The most distinctive feature of these fish were the enlarged fang-like teeth in both their upper and lower jaws, over 6cm (2.4″) long in the largest individuals, which may have been a specialization for feeding on soft-bodied cephalopods.

Despite having been nicknamed “saber-toothed herrings”, they weren’t actually closely related to herrings at all, instead being part of the aulopiformes – a group also containing modern lizardfish, lancetfish, and a different type of sabertooth fish.

Fossils of various Enchodus species have been found all over the world, and they seem to have been very common and important members of ancient marine ecosytems, occupying mid-level carnivore niches and in turn being eaten by other predators. Their remains have been identified within the preserved stomach contents of marine reptiles such as plesiosaurs and mosasaurs, as well as sharks and hesperornithean birds.

These toothy fish survived through the end-Cretaceous mass extinction and continued their success for almost 30 million years into the Cenozoic, with the last known fossils dating to just 37 million years ago in the Late Eocene. They probably didn’t survive much longer beyond that date, since there was an extinction event at the Eocene-Oligocene boundary (~34 mya), a period of sudden cooling that affected many marine animals at the time.

Rebellatrix

Coelacanths are famous for being “living fossils”, completely disappearing from the fossil record at the end of the Cretaceous but then being rediscovered alive just 80 years ago. But although they’re often thought to have physically changed very little over the last 300 million years or so, more recent discoveries are starting to show that coelacanth body forms and lifestyles were actually more varied in the distant past.

Meet the wonderfully-named Rebellatrix divaricerca, from the Early Triassic of British Columbia, Canada (~251-247 mya). Measuring around 1.3m long (4′3″), its body shape and large symmetrical forked tail suggest it was adapted for fast swimming. Unlike its slow-moving deep-water modern relatives this coelacanth was a speedy oceanic active predator, convergently similar to tuna or some sharks.

Since it lived in the immediate wake of the end-Permian “Great Dying” mass extinction, Rebellatrix may have rapidly evolved from more standard-looking coelacanths to take advantage of a suddenly vacant ecological niche – or it might be part of a more extensive unusual lineage whose other members simply haven’t been discovered yet.

Eospinus

Eospinus daniltshenkoi, a tetraodontiform fish from the early Eocene of Turkmenistan (~56-48 mya). Only about 5cm long (2″), it was a close relative of modern boxfish and triggerfish, as well as a completely extinct group called spinacanthids.

It was heavily armored, with large plate-like scales creating a boxfish-like carapace, but its most distinctive feature was its multiple long spines – three dorsal spines on its back, a fourth on its head resembling a “horn”, a pair of smaller spines on the sides of its body, and one on its underside formed from partially fused vestigial pelvic fins.

Potanichthys

Potanichthys xingyiensis, a fish from the Middle Triassic of China, living around 235-242 million years ago.Measuring about 15cm long (6″), it was one of the oldest known fish capable of aerial gliding – possessing a “four-winged” body plan with enlarged pectoral and pelvic fins, and an asymmetrical tail with a long lower lobe. It was also almost completely scale-less, which may have helped to reduce drag and make it more aerodynamic.

Despite the similar appearance it had no close relation to modern flyingfishes, and was instead a result of convergent evolution in a completely different lineage of the ray-finned fishes.

Edestus

Edestus, a holocephalan fish from the Late Carboniferous (~315-299 mya) of Eurasia and North America. A relative of the “spiral-saw-mouthed” Helicoprion, it continuously grew a single row of teeth in each jaw, creating an arrangement often compared to a pair of pinking shears.

Multiple species of this genus have been named, with varying degrees of tooth bracket curvature, and the largest may have had body sizes similar to modern white sharks – about 6m long (19′8″).

Since Edestus is only known from fossilized tooth brackets, how exactly its jaws worked and what it ate with them is still a mystery. Many reconstructions end up either goofy or horrifying as a result, and so I’ve attempted to make this one look a bit more “normal”. And capable of closing its own mouth.


Edit: This reconstruction was based more on chimaeras than on other eugeneodontids, and is therefore probably very inaccurate. When I originally did this image I wasn’t aware body outlines were known for the group. For a much more accurate version see my 2020 version in the “Weird Heads” series.