Puijila

We have a fairly good picture of the evolutionary origins of most groups of aquatic mammals – except for the pinnipeds. The fossil record of early seals is still rather sparse, and for a long time the earliest known species was Enaliarctos, an animal that was already very seal-like and didn’t help much in figuring out whether seals’ closest living relatives are bears or musteloids.

But then Puijila darwini was found in the late 2000s, a transitional form with a near-complete skeleton, filling in a gap in our understanding so conveniently it almost seems too good to be true.

This is the equivalent of Archaeopteryx for seals.

Discovered in Nunavut, Canada, Puijila dates to the early Miocene, about 23-20 million years ago. It was a small freshwater otter-like animal, about 1m long (3’3″), with a long tail and webbed feet adapted for paddling with all four of its limbs.

It lived at around the same time as the more specialized Enaliarctos, so it wasn’t a direct ancestor of modern seals, instead being part of an early offshoot lineage that retained more basal characteristics – but it does gives us a clue as to what the earliest pinnipeds looked like. Along with genetic studies it also helped to clarify that seals’ closest relatives are indeed the musteloids, although they’re estimated to have last shared a common ancestor around 45 million years ago so there’s still a lot of time unaccounted for in the proto-seal fossil record.

Several other fossil species that were previously thought to be musteloids have now also been recognized as close relatives of Puijila, and it seems that they were a fairly widespread group basically filling the ecological niche of otters at a time before true otters existed.

Most surprising and frustrating of all, however, is that some of these other otter-seals actually survived all the way into the Pleistocene, only going completely extinct sometime in the last 2 million years.

We barely missed having them still alive today!

Maiabalaena

The earliest baleen whales didn’t actually have any baleen plates in their mouths, and the evolutionary origin of these unique filter-feeding structures is still poorly understood.

It was thought to have been a fairly simple linear process from toothed ancestors to a mix of teeth and baleen and then to fully toothless with just baleen, but more recent discoveries have begun to cast doubt on that idea. The teeth of ancestral baleen whales weren’t suited to filter-feeding at all, instead still being adapted for predatory piercing and chewing – actions which would have been constantly interfering with and damaging any proto-baleen forming alongside them, and making it seem much more unlikely that there would have ever been a transitional form that had both teeth and baleen at the same time.

But then how did baleen whales get their baleen?

Maiabalaena nesbittae here provides a possible solution. Discovered in Oregon, USA, this early baleen whale dates to the early Oligocene, around 33 million years ago, and compared to most of its modern relatives it was comparatively tiny, only about 4.6m long (15′).

And it had no teeth at all, but possibly also no baleen.

Baleen rarely fossilizes, so it’s unclear whether Maiabalaena actually had any or not, but the shape of its skull suggests it probably didn’t – it lacked the broad thickened upper jaw associated with supporting racks of baleen plates. It instead seems to have been adapted for suction feeding similar to modern belugas and beaked whales, using muscular cheeks and tongue to manipulate water pressure and pull small prey like fish and squid straight into its mouth.

Since it lived at a time when the Antarctic Circumpolar Current was forming and cooling the oceans, changing ecosystems and prey availability, it may represent a previously unknown stage in baleen whale evolution – a point when they’d moved towards specializing for suction feeding and lost their teeth entirely, before transitioning again over to filter-feeding with baleen in a completely separate evolutionary development a few million years later.

Livyatan

The modern sperm whale is already an impressive animal, being by far the largest of the living toothed whales and famous for its ability to dive over 2km down (1.2 miles) to feed on deep-sea animals like giant squid.

But some of its ancient relatives were terrifying.

Livyatan melvillei here has an appropriately monstrous name, inspired by both the Hebrew name for the Leviathan and Herman Melville, the author of Moby-Dick. Known from the Pacific coast of South America during the late Miocene, around 10-9 million years ago, it’s estimated to have measured somewhere between 13.5m and 17.5m long (~44′-57′) – comparable in size to an adult male sperm whale.

Unlike the relatively slender mouth of its modern cousin, however, it instead had thick strong jaws full of enormous teeth.

Livyatan melvillei skull by Ghedoghedo | CC BY-SA 4.0
(for an idea of the sheer size of this reconstructed skull – some of those teeth are almost the length of your forearm)

It was part of a loose grouping of what are known as “macroraptorial sperm whales“, which all had similarly toothy jaws and occupied the same sort of ecological niche as modern orcas, specializing in hunting prey like large fish, squid, seals, and other whales.

Livyatan‘s main food source was probably smaller baleen whales about half its own size, and its only real competition for this prey was the equally huge megalodon shark that shared the same waters.

A huge fossil tooth found in Australia suggests that Livyatan or a very close relative of it survived at least into the early Pliocene, about 5 million years ago. Around this time a cooling climate and dwindling numbers of its preferred prey would have eventually made a population of such enormous apex predators unsustainable, and driven this “killer sperm whale” into extinction – probably around the same time megalodon disappeared, about 3.6 million years ago.

Inticetus

While most modern toothed whales have jaws full of teeth that are all the same simple pointed shape – an adaptation for better holding onto slippery prey – their ancient ancestors had teeth much more like other mammals, with differentiated incisors, canines, and molars.

In-between them were whales like Inticetus vertizi, which lived off the coast of southwestern Peru during the Early Miocene, about 18 million years ago.

At over 3.5m long (11′6″) it was one of the larger known toothed whales around at the time, but it wasn’t the direct ancestor of any living whales. Instead it was more of an evolutionary “cousin” to them, part of an older offshoot lineage that lived alongside the early members of modern toothed whale groups.

Inticetus had a long and unusually wide-based snout, somewhat croc-like in appearance, with sharp pointed teeth at the front and multi-lobed cheek teeth further back. A lack of obvious wear on its back teeth suggests it wasn’t using them to chew up its food, and it may have had a fairly specialized diet – possibly using those back teeth to sieve small prey out of the water in a similar manner to modern lobodontine seals.

An close-up view of Inticetus' jaws, showing the differences in tooth shape from front to back.
Closeup of Inticetus‘ jaws

Inticetus-like teeth have also been found in Miocene-aged deposits in the eastern USA, the Atlantic coast of France, and southeast Italy, indicating that this ancient whale lineage was quite widespread.

Nanodobenus

Nanodobenus arandai, a pinniped from the mid-to late Miocene (~16-9 mya) of Baja California Sur, Mexico. Although it would have looked very similar to a sea lion, it was actually an early member of the walrus lineage that lacked the specialized long tusks that characterize its modern relatives.

At just 1.65m long (5′5″) it was only about half the size of living walruses, making it the smallest member of the group ever discovered and leading to it being given the nickname “smallrus”.

It probably occupied a similar sort of fish-eating ecological niche as true sea lions – which eventually replaced it in the region after its extinction – and since it lived alongside several other larger species of walrus it may have become dwarfed to avoid direct competition with them.

Rayanistes

Remingtonocetids were an early branch of the whale evolutionary family tree, known from about 49-41 million years ago and splitting off somewhere between the famous “walking whale” Ambulocetus and the more oceanic protocetids. With otter-like bodies, tiny eyes, and long gharial-like snouts, they lived in near-shore shallow marine habitats and probably swam using a combination of their hind feet and tails.

They were initially found only in Pakistan and India, but then Rayanistes afer here was discovered all the way over in Egypt – suggesting that these early whales were much more widespread than previously thought, dispersing through the Tethys Sea at about the same time as their protocetid cousins.

Dating to the Middle Eocene (~45-41 mya), Rayanistes was probably about 2.5m long (8′2”). It had powerful hindlimb musculature that would have given it a very strong kicking swimming stroke, but it probably couldn’t actually support its own weight on land since its femur wasn’t very well anchored into its pelvis.

Enaliarctos

Enaliarctos mealsi, an early seal from the Late Oligocene and Early Miocene of California, USA (~23-20 mya).

Measuring about 1.5m long (5′), it was a transitional form between modern seals and their more otter-like ancestors. It was well-adapted for swimming with a flexible spine and flipper-like limbs, but unlike most modern pinnipeds it probably used both its front and hind flippers for propulsion.

Its teeth also still resembled those of terrestrial carnivores, with slicing carnassials at the back of its jaws. This suggests that it had to drag larger prey items back to shore in order to tear them apart and eat them, similar to the behavior of modern otters.

Orcinus citoniensis

Despite commonly being called “killer whales” modern orcas are actually the largest living members of the oceanic dolphin family. Their ancestors are thought to have diverged from other dolphins between 10 and 5 million years ago – and surprisingly their closest relatives are the much smaller snubfin dolphins found in Australasia.

Living during the Pliocene (5-2 mya) in the Mediterranean, Orcinus citoniensis was an early member of the orca lineage, and was probably a transitional form between their early dolphin ancestors and the modern Orcinus orca.

It was half the size of modern orcas, at about 4m long (~13′). While it had a higher tooth count than its living relatives its teeth were also proportionally smaller, suggesting it wasn’t specialized for tackling large prey and probably fed mainly on fish and squid.

Waharoa

Waharoa ruwhenua, a whale from the Late Oligocene of New Zealand (~27-25 mya). Part of an early branch of the baleen whale lineage, it’s known from partial remains of an adult and a couple of juveniles and would have reached a full size of about 6m long (19′8″).

It had an unusually long flattened snout, with its nostrils further forward than modern whales, and only had baleen in the back half of its mouth – an interesting comparison to the intermixed teeth-and-baleen of some other early mysticetes. It’s not clear whether it had any vestigial teeth in the front of its jaws, although a single possible tooth has been found associated with its close relative Tokarahia.

The rather delicate nature of Waharoa’s jawbones suggests it wasn’t capable of rapid lunges at swarms of its small prey, instead probably using slow-cruising surface skim-feeding similar to modern right whales.

Inermorostrum

Inermorostrum xenops, a recently-named ancient cetacean!

Living about 30 million years ago in shallow coastal waters around the southeast USA, in what is now South Carolina, it was a member of one of the very earliest groups of toothed whales known as the xenorophids. Although only very distantly related to modern forms, xenorophids show evidence of being able to echolocate, suggesting the ability was probably ancestral to all toothed whales.

Estimated to have measured about 1m long (3′3″), Inermorostrum had a very short downturned snout and was completely toothless – specialized adaptations for suction feeding on small soft-bodied creatures on the seafloor.

Unusually for a toothed whale it also had proportionally large infraorbital foramina, openings in the bones of its snout for blood vessels and nerves to pass through. This suggests the presence of well-developed fleshy lips and possibly whiskers (as illustrated here), or maybe even an electroreceptive sense similar to some modern dolphins.