Rhacheosaurus

Metriorhynchids were a group of fully marine crocodyliforms known from the mid-Jurassic to the early Cretaceous of Europe and the Americas. They were the most aquatic-adapted of all known archosaurs, with streamlined bodies, smooth scaleless skin, small front flippers, larger hind flippers, and shark-like tail flukes. They may also have been endothermic, and might even have given live birth at sea rather than laying eggs.

Rhacheosaurus gracilis here was a metriorhynchid that lived in warm shallow waters around what is now Germany during the late Jurassic, about 150 million years ago. Around 1.5m long (~5′), its long narrow snout lined with delicate pointed teeth suggests it fed on small soft-bodied prey, a niche partitioning specialization that allowed it to coexist with several other metriorhynchid species in the same habitat.

Unlike most other marine reptiles metriorhynchids didn’t have particularly retracted nostrils, which may have had a limiting effect on their efficiency as sustained swimmers since higher-set nostrils make it much easier to breathe without having to lift the whole head above the surface. The lack of such an adaptation in this group may be due to their ancestors having a single nasal opening formed entirely within the premaxilla bones at the tip of the snout, uniquely limiting how far it could easily shift backwards – other marine reptiles had nostrils bound by the edges of multiple different bones, giving them much more flexibility to move the openings around.

(By the early Cretaceous a close relative of Rhacheosaurus did actually evolve nostrils bound by both the premaxilla and the maxilla, and appeared to have started more significant retraction, but unfortunately this only happened shortly before the group’s extinction.)

Metriorhynchids also had well-developed salt glands in front of their eyes, but the large sinuses that accommodated these glands may have made their skulls ill-suited to deep diving, being more susceptible to serious damage from pressure changes and restricting their swimming to near-surface waters only.

Preserved skin impressions in some metriorhynchid fossils show several unusual “irregularities”, including curl shapes, small bumps, and cratering. It’s unknown what exactly caused these marks, but they may represent scarring from external parasites such as lampreys and barnacles.

Continue reading “Rhacheosaurus”

Heterohyus

Apatemyids were a group of unique early placental mammals that lived during the first half of the Cenozoic, known from North America, Europe, and Asia. Due to their specialized anatomy their evolutionary relationships are rather murky (they were traditionally part of the convoluted mess that was “Insectivora”), but currently they’re thought to be a very early offshoot of the Euarchontoglires, the branch of placentals that includes modern rodents, lagomorphs, treeshrews, colugos, and primates.

Living in what is now western Europe during the mid-Eocene, around 47 million years ago, Heterohyus nanus was a small apatemyid about 30cm long (~12″) – although just over half of that length was made up of its tail.

Like other apatemyids it had a proportionally big boxy head, with large forward-pointing rodent-like incisors in its lower jaw and hooked “can-opener-shaped” incisors in its upper jaw.

Example of an apatemyid skull from the closely related American genus Sinclairella.
From Samuels, Joshua X. “The first records of Sinclairella (Apatemyidae) from the Pacific Northwest, USA.” PaleoBios 38.1 (2021). https://doi.org/10.5070/P9381053299

The rest of its body was rather slender, and fossils with soft tissue preservation from the Messel Pit in Germany show that it had a bushy tuft of longer fur at the end of its long tail.

But the most distinctive feature of apatemyids like Heterohyus were their fingers, with highly elongated second and third digits resembling those of modern striped possums and aye-ayes. This suggests they had a similar sort of woodpecker-like ecological role, climbing around in trees using their teeth to tear into bark and expose wood-boring insect holes, then probing around with their long fingers to extract their prey.

Continue reading “Heterohyus”

Retro vs Modern #17: Ammonites

Ammonites (or ammonoids) are highly distinctive and instantly recognizable fossils that have been found all around the world for thousands of years, and have been associated with a wide range of folkloric and mythologic interpretations – including snakestones, buffalo stones, shaligrams, and the horns of Ammon, with the latter eventually inspiring the scientific name for this group of ancient molluscs.

(Unlike the other entries in this series the reconstructions shown here are somewhat generalized ammonites. They’re not intended to depict a specific species, but the shell shape is mostly based on Asteroceras obtusum.)


1830s

It was only in the 1700s that ammonites began to be recognized as the remains of cephalopod shells, but the lack of soft part impressions made the rest of their anatomy a mystery. The very first known life reconstruction was part of the Duria Antiquior scene painted in 1830, but to modern eyes it probably isn’t immediately obvious as even being an ammonite, depicted as a strange little boat-like thing to the right of the battling ichthyosaur and plesiosaur.

The argonaut octopus, or “paper nautilus”, was considered to be the closest living model for ammonites at the time due to superficial similarities in its “shell” shape, but these modern animals were also rather poorly understood. They were commonly inaccurately illustrated as floating around on the ocean surface using the expanded surfaces on two of their tentacles as “sails” – and so ammonites were initially reconstructed in the same way.


1860s

While increasing scientific knowledge of the chambered nautilus led to it being proposed as a better model for ammonites in the mid-1830s, the argonaut-style depictions continued for several decades.

Interestingly the earliest known non-argonaut reconstruction of an ammonite, in the first edition of La Terre Avant Le Déluge in 1863, actually showed a very squid-like animal inside an ammonite shell, with eight arms and two longer tentacles. But this was quickly “corrected” in later editions to a much more nautilus-like version with numerous cirri-like tentacles and a large hood.

The nautilus model for ammonites eventually became the standard by the end of the 19th century, although they continued to be reconstructed as surface-floaters. Bottom-dwelling ammonite interpretations were also popular for a while in the early 20th century, being shown as creeping animals with nautilus-like anatomy and numerous octopus-like tentacles, before open water active swimmers eventually became the standard representation.


2020s

During the 20th century opinions on the closest living relatives of ammonites began to shift away from nautiluses and towards the coleoids (squid, cuttlefish, and octopuses). The consensus by the 1990s was that both ammonites and coleoids had a common ancestry within the bactridids, and ammonites were considered to have likely had ten arms (at least ancestrally) and were probably much more squid-like after all.

Little was still actually known about these cephalopods’ soft parts, but some internal anatomy had at least been figured out by the early 21st century. Enigmatic fossils known as aptychi had been found preserved in position within ammonite shell cavities, and were initially thought to be an operculum closing off the shell against predators – but are currently considered to instead be part of the jaw apparatus along with a radula

Tentative ink sac traces were also found in some specimens (although these are now disputed), and what were thought to be poorly-preserved digestive organs, but the actual external life appearance of ammonites was still basically unknown. By the mid-2010s the best guess reconstructions were based on muscle attachment sites that suggested the presence of a large squid-like siphon.

Possible evidence of banded color patterns were also sometimes found preserved on shells, while others showed iridescent patterns that might have been visible on the surface in life.

In the late 2010s the continued scarcity of ammonite soft tissue was potentially explained as being the same reason true squid fossils are so incredibly rare – their biochemistry may have simply been incompatible with the vast majority of preservation conditions.

But then something amazing happened.

In early 2021 a “naked” ammonite missing its shell was described, preserving most of the body in exceptional detail – although frustratingly the arms were missing, giving no clarification to their possible number or arrangement. But then just a few months later another study focusing on mysterious hook-like structures in some ammonite fossils concluded that they came from the clubbed tips of a pair of long squid-like tentacles – the first direct evidence of any ammonite appendages!

A third soft-tissue study at the end of the year added in some further confirmation that ammonites were much more coleoid-like than nautilus-like, with more evidence of a squid-style siphon, along with evidece of powerful muscles that retracted the ammonite’s body deep inside its shell cavity for protection.

Since ammonites existed for over 340 million years in a wide range of habitats and ecological roles, and came in a massive variety of shapes and sizes, it’s extremely likely that their soft anatomy was just as diverse as their shells – so there’s no single “one reconstruction fits all” for their life appearances. Still, at least we now have something less speculative to work with for restorations, even if it’s a bit generalized and composite, and now that we’re finally starting to find that elusive soft tissue there’s the potential for us to discover so much more about these iconic fossil animals.

Retro vs Modern #12: Edmontosaurus annectens

Hadrosaurs were first discovered during the 1850s in North America, with the eponymous Hadrosaurus being both one of the most complete dinosaurs known at the time and also the first dinosaur skeleton to ever be mounted and displayed.

Like many other dinosaurs of the time hadrosaurs were initially reconstructed as bipedal with an upright kangaroo-like pose. Early in the history of their study their wide flat “duckbill” snouts were thought to indicate they were semi-aquatic, and they were frequently portrayed swimming and wading while feeding on soft water plants.

While elaborately bony-crested hadrosaurs like Parasaurolophus have become some of the most famous and recognizable members of the group, the species that’s gone through the most radical changes in our understanding in recent years is probably Edmontosaurus annectens.


1890s-1960s

Edmontosaurus has had an especially messy taxonomic history with various specimens spending decades under many different names, commonly being labelled as Anatosaurus and Trachodon for much of the 20th century. For the sake of avoiding a lot of confusion I’m just going to keep referring to it here as “Edmontosaurus”, even though the naming issues weren’t properly sorted out until the 1990s.

The earliest specimen of what we know call Edmontosaurus was discovered in the 1890s, and the first to actually bear the genus name was the closely related species Edmontosaurus regalis discovered in the 1910s. For many decades it was mostly reconstructed in the then-typical “tripod” posture and seen as being highly aquatic, with an exceptionally well-preserved “dinosaur mummy” specimen being used to support that view – skin impressions around its hands were interpreted as paddle-like webbing used to swim.

The mummy also showed fairly thin and delicate skin, with a pattern of many tiny scales dotted with clusters of larger scales, and what appeared to be a fleshy skin frill running along Edmontosaurus’ neck and back.


2020s

The idea of amphibious hadrosaurs was finally challenged in the mid-1960s, at the start of the Dinosaur Renaissance, with details of their anatomy, possible stomach contents, and the environments that their fossils had been preserved in all being used to help reinterpret them as fully terrestrial herbivores that walked on four legs and ran on two. The discovery of Maiasaura nesting colonies in the late 1970s also revealed a lot of new information about the life history of these dinosaurs, and helped to popularize the image of them as social animals living in herds and caring for their young.

From the 1990s onwards new discoveries of additional “mummies” of both Edmontosaurus and other hadrosaurs have given us even more insights into the soft parts of their anatomy. Their necks and tails were much more thickly muscled and chunky than their skeletons alone suggest, the frill may have had a sort of rectangular segmented appearance, and the webbing on their forelimbs was actually more of a “mitten” that bound their hands into fleshy weight-bearing pads. And instead of a broad “duckbill” they actually had large hooked beaks covering their snouts, giving then more of a horse-like head shape.

We now know Edmontosaurus lived during the very end of the Cretaceous, about 73-66 million years ago, with the older part of that time range represented by Edmontosaurus regalis in Western Canada and the younger part represented by Edmontosaurus annectens in Western Canada and the Western and West North Central United States. It was one of the largest known hadrosaurs with most adult specimens around 9-12m long (~30-39′), but some of the very largest known partial remains suggest the existence of rare enormous “super-adults” that were about 15m long (49′).

Edmontosaurus was probably a grazing animal primarily eating tough low-growing foliage like horsetails, cropping off mouthfuls with its beak and then grinding them up with batteries of hundreds of teeth in the back of its jaws using a unique complex chewing motion.

Its skin had a complex texture of varying scale shapes and sizes across its body, and one mummified specimen of Edmontosaurus regalis shows a raised bumpy pattern of large scale clusters on its neck and a fleshy crest on the top of its head. It’s currently unclear if these were sexually dimorphic features and we don’t know if Edmontosaurus annectens actually had them too, but I’ve speculatively included them in this reconstruction anyway.

And despite being one of the most intensely-studied and completely known non-avian dinosaurs in the world, Edmontosaurus is somehow still continuing to surprise us. Parts of the mummy specimen nicknamed “Dakota” are still being carefully prepared, and in late 2019 the North Dakota Geological Survey teased an unexpected discovery – a large single hoof-like nail on the front of its hand, unlike anything ever seen before on a dinosaur, and suggesting that Edmontosaurus may have been much more specialized for purely quadrupedal movement than previously thought.

Official details on the “hoof” still haven’t been published yet, but whenever it happens it’ll be exciting to find out just what’s actually going on there.

Seeleyosaurus

Seeleyosaurus guilelmiimperatoris here was a smallish plesiosaur (about 3.5m long / 11’6″) found in Germany during the early Jurassic, about 182 million years ago.

And back in the 1890s, a specimen of this species was discovered with soft tissue impressions showing a diamond-shaped tail fin.

But despite us knowing about plesiosaur tail flukes for such a long time, they’re surprisingly under-represented in reconstructions, never seeming to have become associated with the popular image of these animals in the same way that early pterosaur’s tail vanes did. It doesn’t help that no other direct impressions of plesiosaur tail fins have ever been found, or that the Seeleyosaurus specimen’s soft tissue got painted over at some point in the mid-1900s, making it incredibly difficult to study without causing further damage. 

(Perhaps modern non-invasive scanning techniques could be able to see under the paintjob, but as far as I’m aware nobody’s tried that yet.)

These tail fins are usually assumed to have been vertically oriented like those of other aquatic reptiles, moving side-to-side and acting like a rudder. However, there’s also a hypothesis that their fins might have actually been horizontal more like those of modern cetaceans and sirenians, based on several anatomical quirks – such as their tail regions being very wide and flat at the base, and the vertebrae at the tip being unusually pygostyle-like, very different from the way the tail bones of vertically-finned reptiles look.

Pleurosaurus

The modern tuatara is the only living representative of an entire major lineage of reptiles known as sphenodontians – an evolutionary “cousin” group to all lizards and snakes, last sharing a common ancestor with them over 240 million years ago.

And during the Triassic and Jurassic these lizard-like animals were a widespread and diverse bunch, found worldwide and occupying many of the ecological roles that were later taken over by true lizards. They ranged from tiny insectivores to omnivores, relatively large herbivores, and specialized shell-crushers – and some even adapted to a fully aquatic fish-eating lifestyle.

Pleurosaurus ginsburgi here lived during the Late Jurassic, about 150-145 million years ago, in the warm shallow seas and lagoons that covered most of Europe at that time. Fossils of this particular species are known from southern France, with the closely related Pleurosaurus goldfussi found in both the same region and the German Solnhofen Limestone.

These swimming sphenodontians could grow to around 1.5 in length (~5′), with elongated bodies, pointed triangular snouts with retracted nostrils, short flipper-like forelimbs, and especially long eel-like tails. Soft tissue impressions also show scaly skin covering their bodies and a “frill” running along the top of the tail.

Ichthyosaur Blubber

In early 2017 evidence of blubber was found in plesiosaurs, indicating that they were probably much more chubby than they’re usually reconstructed, and now in late 2018 it’s been found in an ichthyosaur, too!

Living during the Early Jurassic (~183-179 mya) in the shallow seas that covered most of Europe at the time, Stenopterygius was an average-sized ichthyosaur growing up to about 4m in length (13′). A fossil found in Germany has some incredibly good soft-tissue preservation, showing smooth flexible scaleless skin, a layer of insulating blubber very convergently similar to that found in cetaceans, and even evidence of countershaded coloration.

While the confirmation of blubber is amazing, and gives further evidence that ichthyosaurs were warm-blooded, the color preservation might actually be even more interesting. The skin pigmentation is preserved in enough fine detail for branched melanophores to be visible under a microscope – a type of cell associated with the ability to change color. So there’s a possibility that ichthyosaurs could actively darken or lighten their color patterns, for purposes such as better camouflage, UV protection, or temperature regulation.

Ascendonanus

The recently-described Ascendonanus nestleri from the Early Permian of Germany (~290 mya). This 40cm long (1′4″) animal was a member of a group called varanopids – which may have been an early branch of the synapsid lineage and distantly related to modern mammals*.

Known from several near-complete fossils that include rare soft tissue impressions, it’s the first varanopid to show preserved skin details – revealing a pattern of very lizard-like rectangular scales. If it is a synapsid this is a pretty big deal, since early synapsids were previously thought to have had scale-less leathery skin.

It also had unusual mosaic-like patches of tiny osteoderms above its eyes, a feature previously known only in some temnospondyl amphibians. Whether this was the result of convergent evolution or the trait actually being ancestral to most tetrapods is unclear.

Its slender body, long digits, and highly curved claws indicate it was an agile climber. It probably mainly lived up in the treetops, feeding on insects, making it one of the earliest known tetrapods specialized for an arboreal lifestyle.

(*Maybe. There’s apparently an upcoming study that suggests varanopids might actually be sauropsids instead.)