Joermungandr

Named after a legendary Scandinavian serpent, Joermungandr bolti here was a recumbisrostran “microsaur” – part of a group of animals that were traditionally considered to be lepospondyl amphibians, but more recently have been proposed to in fact be a lineage of early reptiles.

Discovered in the Mazon Creek fossil beds in Illinois, USA, this species dates to the late Carboniferous period around 310 million years ago. A single near-complete specimen about 5cm long (~2″) preserves impressions of the body outline and numerous tiny scales, giving us a pretty good idea of what it looked like in life.

Joermungandr had a long streamlined tubular body with small limbs and a short tapering tail, and a stubby snout with fused bones heavily reinforcing its skull. Along with microscopic ridges on its body scales that resemble the dirt-repelling scales of some modern reptiles, this combination of features suggest it was a headfirst burrower that wriggled its way through soil with snakelike motions.

Spectember 2021 – Reedstilt Redesign

(This was originally supposed to be a final-day-of-#Spectember bonus post, but it got much longer than I expected so it’s a few days late.)

To finish off this year’s diversion into speculative evolution, instead of pulling from my still-rather-long list of unused submissions I’m doing something a little different – trying to give an idea of how I go through the actual process of designing a speculative species.

And for today’s example I’m going to do a “redesign” of sorts for a classic Dougal Dixon After Man creature: the reedstilt.

For several reasons:

  • It was on the cover of the old edition of After Man I first discovered as a kid in the local library, it immediately caught my attention, and as a result it’s always been one of my favorite species from the book.
  • But some of its anatomy doesn’t really hold up.
  • I really really Do Not Like the “official” redesign that replaced the original art in the 2018 reprint. It’s shrinkwrapped.
  • I just think it’s neat.
Reedstilt in both original flavor and 2018 revamp style.
Continue reading “Spectember 2021 – Reedstilt Redesign”

Spectember 2021 – Slime Snouters & Megaphone Birds

Today’s #Spectember concept is brought to you by @thecreaturecodex , who wanted to see a depiction of something from The Snouters: Form and Life of the Rhinogrades:

Continue reading “Spectember 2021 – Slime Snouters & Megaphone Birds”

Spectember 2021 – Quadrupedal Pachycephalosaurs

Today’s #Spectember concept comes from an anonymous submitter:

Continue reading “Spectember 2021 – Quadrupedal Pachycephalosaurs”

Spectember 2021 – Marsupial Predators

It’s September, the Cambrian series has been delayed until later this year, so instead let’s get speculative – it’s time for the return of #Spectember! I can’t manage daily content this time around, but I still have plenty of submitted concepts left over from last time.

So let’s get started with some marsupials suggested by someone crediting themselves only as Bruno Drundridge:

Continue reading “Spectember 2021 – Marsupial Predators”

Qinornis

66 million years ago, the end-Cretaceous mass extinction wiped out all dinosaurs except for the avian bird lineage.

…Or did it?

But I’m not talking about the dubious claims of non-avian dinosaur fossils found in places they shouldn’t be. This is about something else entirely: an unassuming little bird known as Qinornis paleocenica.

Living in Northwest China during the mid-Paleocene, about 61 million years ago, Qinornis was roughly pigeon-sized at around 30cm long (12″). It’s known only from a few bones from its legs and feet, but those bones are unusual enough to hint that it might have been something very special.

Uniquely for a Cenozoic bird, some of its foot bones weren’t fully fused together. This sort of incomplete fusion is seen in both juvenile modern birds and in adults of non-avian ornithurine birds from the Cretaceous – and the Qinornis specimen seems to have come from an adult animal.

If it was fully grown with unfused feet, then that would suggest it was actually part of a “relic” lineage living 5 million years after the mass extinction, surviving for quite some time longer than previously thought.

The last known non-avian dinosaur.

Coelurosauravus

Remarkably similar-looking gliding reptiles have appeared multiple different times over the group’s evolutionary history, including the modern Draco – and despite being unrelated to each other almost all of them have achieved this in the exact same way, supporting their wing membranes on extremely elongated rib bones.

…Except for the weigeltisaurids.

These early members of the neodiapsid lineage were the very first vertebrates known to have experimented with gliding, all the way back in the late Permian period 260-252 million years ago. And while they superficially resembled all the later rib-gliders, their wings were actually something never seen before or since in a gliding reptile.

Basically, these animals were the closest that Earth life ever came to legitimately evolving a dragon.

Coelurosauravus elivensis here was a weigeltisaurid living in what is now Madagascar, which at the time was part of southern Pangaea. About 40cm long (1’4″), its body was adapted for a life climbing and gliding around in the treetops, with pneumatized air spaces lightening its bones and long slender limbs similar to those of modern tree-climbing lizards.

Its large wings were formed from around 30 pairs of long hollow rod-shaped bones extending out from the sides of its belly. These flexible structures could furl and unfurl with a motion like a foldable fan, and are thought to have been highly modified from osteoderms in the skin, creating an entirely new part of its skeleton. 

Towards the front of the wing the rods were arranged in several closely-packed “bundles”, and one specimen of Coelurosauravus preserves an impression of what seems to be the outline of the wing membrane’s leading edge – showing a stiffened pointed shape resembling the alula of a bird wing, which may have served a similar aerodynamic stabilization function.

From fig 2 in Schaumberg, G. et al (2007). New information on the anatomy of the Late Permian gliding reptile Coelurosauravus. Paläontologische Zeitschrift 81, 160–173. https://doi.org/10.1007/BF02988390

But aside from the wings, the most striking feature of weigeltisaurids were their heads. Their skulls featured large crest-like frills resembling those of chameleons and ceratopsid dinosaurs, and their edges were adorned with prominent bumps and spikes. These were probably used for visual display and might have been a sexually dimorphic feature, with males having larger spikier crests than females. The crests may also have anchored large powerful jaw muscles, giving weigeltisaurids a wider gape and faster bite speed, helping them to snap up their fast-moving insect prey.

Allodesmus

Desmatophocids were a group of seal-like pinnipeds that appeared very early in the group’s evolution, around 23 million years ago. They were found across the northern Pacific from the west coast of North America to Japan, and were the first pinnipeds to get big, with some species reaching sizes comparable to modern northern elephant seals.

They had a mixture of anatomical features similar to true seals, sea lions, and walruses, but weren’t actually the ancestors of any of those modern groups. Instead they seem to have just been their own separate thing, a very early diverging “cousin” lineage of pinnipeds that convergently developed close resemblances to their later relatives.

Allodesmus demerei here was one of the last known desmatophocids, living in the late Miocene (~9 million years ago) in what is now southwest Washington, USA. 

It would have been a sea lion-like animal, able to walk on all fours when hauled out on land, and showed distinct sexual dimorphism, with males growing to sizes of around 4m long (13′) and females being somewhat smaller. It powered its swimming using its front flippers, and may have mostly foraged in deep dark waters, using both keen vision and sensitive whiskers to locate prey.

The nasal region of its skull also shows some similarities to modern elephant seals, and some reconstructions depict males with the same sort of large proboscis. 

Huehuecuetzpalli

Bipedal running has convergently evolved multiple times in squamate reptiles, known in over 50 modern species – and fossil evidence shows this is nothing new, with lizards repeatedly developing the ability to sprint on their hind legs for well over 100 million years.

Huehuecuetzpalli mixtecus here lived in east-central Mexico during the mid-Cretaceous, about 105 million years ago. About 25cm long (10″), it was part of an early branch of the iguanomorph lineage, related to the ancestors of modern lizards like iguanas, chameleons, and agamids.

Its limb proportions indicate it would have been a bipedal runner, making it one of the earliest known examples of this type of locomotion in lizards. Its skull also had some features convergent with varanids, suggesting it may have had a similar sort of active-pursuit-hunting ecology.