Patagomaia

Although most Mesozoic mammals were rather small, a few different lineages produced some pretty hefty-sized forms – most notably the metatherian Didelphodon, the gondwantherians Adalatherium and Vintana, and the eutriconodont Repenomamus.

And now we’ve got another one to add to that list.

Patagomaia chainko lived towards the end of the Cretaceous, about 70 million years ago, in what is now Patagonia near the southern tip of South America. Known from some partial leg and hip bones, it was potentially the largest known Mesozoic mammal yet discovered – estimated to have been similar in size to a modern bobcat, roughly 50cm tall at the shoulder (~1’8″) and weighing around 14kg (~31lbs).

Distinctive anatomical features of the bones indicate it was an early therian mammal, the group that contains both modern marsupials and placentals, but it can’t currently be classified any more specifically than that. Mesozoic therian fossils are very rare in the southern continents, so Patagomaia‘s presence in late Cretaceous South America adds to their known range and diversity, as well as providing an example of surprisingly large body size for the time.

Without more material it’s impossible to tell what Patagomaia‘s ecology was. I’ve gone for a fairly generic life appearance here, and while what’s known of its joints and muscle attachments doesn’t indicate climbing specializations, plenty of unexpected tetrapods still like to get up on tree branches.

Unnuakomys

Towards the end of the Cretaceous, about 69 million years ago, the most diverse and numerous mammals in the northern hemisphere were the metatherians, close relatives of modern marsupials.

And Unnuakomys hutchisoni was the most northern-living of all these metatherians.

About the size of a modern mouse, around 10-15cm long (4-6″), and with teeth that suggest it was a shrew-like insectivore, this little metatherian lived in northern Alaska in what’s known as the Paaŋaqtat Province – a region with a distinctive population of endemic polar animals. At the time this area was located at an even higher latitude than it is today, around 80-85ºN, but due to a greenhouse climate it was also warmer, with no permanent ice and the average temperatures staying above freezing.

Unnuakomys was by far the most common mammal species in the Paaŋaqtat Province, represented by numerous fossil teeth and a few jaw fragments, and it also seems to have been the only metatherian living in the whole region. This may just be a preservation bias in the fossil record, but it might also indicate that Unnuakomys was uniquely specialized to endure the several months of continuous darkness each winter in its polar woodland environment, while other North American metatherians were restricted to more southerly latitudes.

Palaeosinopa

Cimolestans were one of the major mammal lineages that survived through the K-Pg mass extinction 66 million years ago. Closely related to early placentals, they had a burst of diversification during the first half of the Cenozoic and rapidly evolved into a wide range of specialized forms – some uniquely weird, and others convergently resembling more familiar modern animals like squirrels, bears, ground sloths, and hippos.

And one group known as the pantolestids were incredibly otter-like.

(Because synapsids love them some lutrinization.)

Palaeosinopa didelphoides here lived during the mid-Eocene, about 52 million years ago, in what is now the Mountain West region of the USA. It was similar in size to a small otter, about 1m long (3’3″), and had a streamlined body with a well-muscled neck, short powerful forelimbs, slightly longer hindlimbs, and a very long tail.

Inhabiting a subtropical lake ecosystem, it probably swam using both hindlimb paddling and otter-like tail undulations. Its strong jaws and teeth suggest it was specialized for crunching hard shellfish prey, but so far preserved gut contents have only shown fish bones and scales. Fairly large claws indicate it was also able to dig out burrows similarly to modern otters and beavers.

Although pantolestids were never particularly common animals they were quite widespread, expanding their range from their evolutionary origins in North America across to Europe and eventually into Asia. A cooling and drying climate at the end of the Eocene seems to have driven most of the group into extinction alongside all their other cimolestan relatives – but a few of the Asian species clung on slightly longer as the very last of their kind, with the last known fossils dating to about 28 million years ago in the early Oligocene.

Stylinodon

In the early Cenozoic mammals were rapidly diversifying and evolving. And while it was the placental mammals that would end up being the most successful across much of the world, they weren’t the first mammal lineage to take advantage of all the ecological niches left vacant in the wake of the end-Cretaceous mass extinction.

The cimolestans were a group of non-placental eutherians – mammals closer related to modern placentals than to marsupials – that very quickly evolved into a wide range of niches during the Paleocene and Eocene, becoming some of the largest mammals of their time and producing forms as varied as squirrel-like, otter-like, ground sloth-like, and hippo-like.

But some of the weirdest of them all were the taeniodonts. Originating back in the late Cretaceous, these herbivorous cimolestans were characterized by short blunt snouts with large front teeth, and limbs with long claws.

Stylinodon mirus here was one of the largest taeniodonts, standing around 70cm tall at the shoulder (2’4″), and was also one of the last of its kind, living during the mid-Eocene about 50-40 million years ago in western North America.

It took the specializations of its lineage to the extreme, with a odd-looking boxy skull with enormous chisel-like ever-growing front teeth similar to those of a rodent – but derived from its canine teeth rather than its incisors.

Stylinodon skull | photograph by Yinan Chen | CC0

Its powerful front limbs and large claws were clearly specialized for digging, and for a long time it was thought to be obvious what its diet was – clearly it must have been unearthing roots and tubers from underground, right?

However, closer looks at its teeth raise a problem with that interpretation. That sort of food source should have left numerous telltale marks on the chewing surfaces of its teeth, scratches and gouges and abrasions from dirt and grit mixed in with the roots being eaten.

Yet Stylinodon barely shows any of those wear marks, suggesting that it rarely actually ate those food items. Its tooth surfaces were instead worn very smooth, indicating that it was eating something particularly tough that was constantly “polishing” them as it chewed — but what exactly that food source was is still unknown.

It may also have used its forelimbs to help pull down branches down towards its mouth, stripping off leaves and bark similar to ground sloths, chalicotheres, and therizinosaurs – but it probably did mostly use those big claws to actually dig, just perhaps mainly to construct large burrows rather than to find food.

Almost-Living Fossils Month #24 – Sabertoothed Sparassodonts

Along with the marsupials and the polydolopimorphs, the sparassodonts were one of the lineages of metatherian mammals that inhabited South America during its “great isolation” for most of the Cenozoic. And despite having to share the large carnivore niches with both the terror birds and the sebecosuchian crocs, they still managed to become the main mammalian predators of the region.

Their first definite fossils come from the start of the Paleocene (~65 mya), but they probably actually originated sometime in the Late Cretaceous before the mass extinction. A currently-unnamed skull from Mongolia (~70 mya) appears to be either an early sparassodont or a very close relative, and a North American metatherian called Varalphadon (~90 mya) may also be linked to the group. It’s possible that, like the marsupials, they may have first evolved in North America and later spread into South America before it became isolated.

Like their marsupial relatives they would have given birth to tiny undeveloped young, although we don’t know for certain if they actually had pouches or not. Their epipubic bones were highly reduced, so it’s possible they didn’t have pouches – but they also might have had mostly cartilaginous epipubics (like thylacines) that just didn’t fossilize.

Over the course of the Cenozoic the sparassodonts convergently evolved many similar features to placental carnivorans, with carnassial teeth for shearing through flesh and a wide variety of body shapes ranging from small weasel-like forms to long-snouted ambush hunters to large hyaena-like bone-crushers.

But by far the most famous members of the group were the thylacosmilids. First appearing in the Early Miocene, about 20-15 million years ago, these sparassodonts developed huge elongated canine teeth that resembled those of sabertoothed cats. Unlike the felid sabertooths, however, thylacosmilids’ fangs grew continuously and their lower jaws had long bony flanges that supported and protected their teeth when theirs jaws were closed.

Thylacosmilus atrox was the last and most highly specialized of the thylacosmilids, living from the Late Miocene to the Late Pliocene, around 9-3 million years ago. About 1.2-1.5m long (~4-5′) and standing 60cm tall at the shoulder (2′) it was similar in size to a modern jaguar – not huge compared to some placental predators, but still one of the largest of all known carnivorous metatherians.

Despite its huge fangs it actually had a fairly weak bite force, instead relying on its strong forelimbs to immobilize its prey before delivering precise deep stabs into soft body parts using powerful neck muscles. The structure of its limbs also suggests it wasn’t a fast runner, and it probably had to stalk or ambush its targets.

Although the extinction of Thylacosmilus and the other last sparassodonts is often blamed on being out-competed by similar placental carnivores arriving during the Great American Interchange, it seems like that wasn’t actually the case. Many of their northern placental equivalents such as Smilodon didn’t enter South America until the mid-Pleistocene (~1-0.7 mya), over 1.5 million years after the last record of any living sparassodonts. So it’s likely they never actually met each other, and the disappearance of the sparassodonts may be more linked to cooling climates in the Pliocene and early Pleistocene.

Almost-Living Fossils Month #19 – Even More Metatherians

While the opossum-like herpetotheriids and peradectids survived in the northern continents for most of the Cenozoic, a wider variety of metatherian mammals were found in the south. Alongside the true marsupials and the sparassodonts, a group known as the polydolopimorphs existed in South America for over 60 million years. Although most of the their fossil remains consist only of isolated teeth and jaw fragments, they seem to have been a very diverse group that adapted to a wide range of ecological niches including insectivores, herbivores, and fruit-eating and seed-eating specialists.

Their exact evolutionary position within the metatherians is still rather unclear and under dispute, with different studies giving different results. They were probably marsupialiformes, slightly less closely related to marsupials than the herpetotheriids, but some paleontologists instead consider them to have been true marsupials related to either the shrew opossums or the microbiotheres. (And some go with both options, proposing that they weren’t even a natural group but were polyphyletic, with some being marsupialiformes and others being true marsupials.)

The earliest definite polydolopimorph fossils come form the very start of the Paleocene in South America (~66 mya), but their lineage likely goes further back into the Late Cretaceous – possible remains from North America suggest they may have originated there at least 70 million years ago, with their ancestors migrating into South America shortly before the end-Cretaceous extinction. A few also reached Antarctica by the Late Eocene (~40-33 mya), before the continent had fully separated from its neighbors and frozen over, but it’s unclear whether any ever made it as far as Australia alongside their marsupial relatives.

They were most diverse during the first half of the Cenozoic, and in the latter half they were represented mainly by a highly specialized lineage called the argyrolagids. Known from western and southern South America (Peru, Bolivia, Argentina, and Chile) from the Early Oligocene onwards, these polydolopimorphs were convergently rodent-like desert herbivores with short forelimbs and long hopping hindlimbs that gave them a resemblance to jerboas or springhares.

Argyrolagus palmeri here lived during the Early Pliocene of Argentina (~5-3.5 mya). About 40cm long (1′4″), it had only two toes on its feet, a long pointed snout, and large eyes and ears that indicate it was probably nocturnal.

These last polydolopimorphs survived until at least the end of the Pliocene, around 2.5 million years ago. Their disappearance coincides with the time of the Great American Interchange – when South America became connected to Central and North America – and they may have been some of the victims of the extinction caused by the influx of placentals from the north.

Almost-Living Fossils Month #18 – Metatherians Everywhere

While modern marsupials are native only to Australasia and the Americas, they’re part of a larger grouping of mammals known as metatherians that were once found around most of the world. Thought to have originated in Asia, perhaps as far back as the Late Jurassic (~160 mya), the ancestral metatherians spread to Europe and the Americas during the Cretaceous and gave rise to multiple different lineages, ranging from small sabertoothed carnivores to otter-like swimmers to the main mammalian predators of Cenozoic South America.

True marsupial fossils didn’t appear in the fossil record until the start of the Paleocene (~65 mya), but some of their closest evolutionary “cousins” – the herpetotheriids – originated a little earlier in the Late Cretaceous, around 70-66 million years ago.

Herpetotheriids were small opossum-like animals found in North America, Asia, Europe, and Africa. They were more terrestrial than the opossums they resembled, adapted for running on the ground rather than climbing, but were probably similarly opportunistic omnivores eating a wide variety of foods.

They survived through the end-Cretaceous extinction and seem to have actually been quite common in the northern continents for most of the Cenozoic. They also weren’t the only metatherians in those regions, living alongside another group called the peradectids which were true marsupials closely related to opossums.

In North America the native metatherians all went extinct sometime around the early Miocene (~20 mya) – although the continent would later be recolonized by opossums from South America during the Great American Interchange. Meanwhile the African herpetotheriids disappeared around the same time, but the European and Asian metatherians continued on into a little longer into the mid-Miocene.

Amphiperatherium frequens was one of the last known members of the herpetotheriids, living in Europe during the early-to-mid Miocene (~20-13 mya). It was about the size of a small rat, around 15-20cm long (6-8″), and seems to have mainly inhabited warm humid environments.

Although the disappearance of the northern metatherians has traditionally been blamed on them being out-competed by placental mammals, the fact that they survived alongside placentals just fine for over 45 million years suggests that something else pushed them over the brink. Their extinction may in fact be more linked to the ongoing drying and cooling climate trends in the latter half of the Cenozoic.

The herpetotheriid’s extinction seems to have happened soon after the Middle Miocene disruption, a sudden shift towards cooler temperatures that may have altered their local ecosystems too quickly for them to adapt. The peradectids hung on until at least 11 million years ago, with some of the last members known from Southeast Asia, but they may have likewise fallen victim to further episodes of global cooling towards the end of the Miocene and into the Pliocene.

Month of Mesozoic Mammals #31: The Survivors

Purgatorius

Quite a few groups of Mezozoic mammals actually made it into the Cenozoic – including multituberculates, dryolestoids, various different metatherians, cimolestans, leptictidans, and possibly another unknown lineage in New Zealand – but most of them eventually declined and died out, and only monotremes, marsupials, and placentals still remain alive today.

We don’t know exactly when placentals originated. The first definitive fossils come from the start of the Cenozoic, but a few early ancestral forms probably already existed during the Late Cretaceous (estimated up to 90-75 mya) and only got their chance to rapidly diversify immediately after the mass extinction event.

One of the closest fossils we have to the earliest placentals is Purgatorius. Known mainly from teeth from the Early Paleocene of North America (66-63 mya), it’s not entirely clear whether it actually existed in the Mesozoic, but its remains have been found very close to the K-Pg boundary and one fossil might actually be from the end-Cretaceous.

A few foot bones have been associated with some of the fossil teeth, and if they do belong to Purgatorius then they show that it had very flexible ankles, a characteristic typical of tree-climbing animals. It would likely have been a squirrel-like creature, about 15-20cm long (6-8″), eating an omnivorous mixture of insects, seeds, and fruit. It may also have been capable of burrowing similar to modern chipmunks.

It’s often been interpreted as a placental mammal, specifically a very early type of primate, but more recent studies suggest it might not even be a true placental at all  – although it was probably still a very close relative of the common ancestor of all living placentals.

Month of Mesozoic Mammals #30: Strange Relations

Gypsonictops

A group known as the leptictidans were probably some of the weirdest early eutherians. With their tiny forelegs, big hindlegs, and long counterbalancing tails, they somewhat resembled jerboas or small kangaroos – except they also had long slender snouts that probably ended in sengi-like proboscises, and their feet were structured more like those of running animals than jumping ones. They’re also thought to have been mainly bipedal, convergently evolving a similar posture and movement style to non-avian theropod dinosaurs.

Leptictidium (Eocene, 50-35 mya) by Tim Bertelink || CC BY-SA 4.0

First appearing in the Late Cretaceous, they made it through the end-Cretaceous extinction and survived up until the mid-Cenozoic across the northern hemisphere, going extinct around 33 million years ago. They were probably omnivores, eating a mixture of insects, small vertebrates, and soft plant matter such as fruit and leaves.

Their mix of “primitive” skull features and highly specialized skeletons makes classifying them particularly difficult. They’ve been proposed to be placentals related to primates and rodents or afrotheres, a very early branch of the eutherians, or close to placentals but not quite true members themselves. The latter interpretation currently seems most likely, but they could also be a paraphyletic group at the base of placentals (suggesting that they could even be ancestral to placentals, and therefore all placentals would technically be leptictidans).

Gypsonictops was one of the earliest leptictidans, living during the Late Cretaceous of North America (70-66 mya). Known only from teeth and jaw fragments, we don’t know much about its appearance or full size – although it was probably smaller than its later relatives, perhaps about 35cm long (1′2″).

Any reconstruction of such fragmentary remains is going to be very speculative, but I’ve restored it here as a sort of transitional form, not yet quite as specialized. A more sengi-like animal, mainly quadrupedal but able to run and hop on its hind legs to flee from danger or chase after small fast-moving prey.

Month of Mesozoic Mammals #29: Rooting Around

Schowalteria

First appearing in the Late Cretaceous, a widespread and diverse group of mammals known as cimolestans were once thought to be early members of placental groups like pangolins and carnivorans. But more recent studies have shown them to be part of a different branch of the eutherian family tree altogether, more like cousins to the earliest placentals and leaving no living descendants.

However, they did make it through the end-Cretaceous mass extinction and were quite successful during the early Cenozoic, evolving into forms ranging from giant herbivores to fanged squirrel-like climbers to otter-like swimmers, with the latter surviving until about 33 million years ago.

One group of North American cimolestans, the taeniodonts, were specialized for digging up tough roots and tubers, with large claws, strong blunt jaws, and big front teeth that became ever-growing in some species.

Schowalteria was the earliest known member of this group, living during the Late Cretaceous of Canada (70-66 mya). Only represented by partial skull material, its full size is unknown – some estimates put it at a similar size to giants like Repenomamus, but it was likely closer to half that size at around 50cm in length (1′8″). Still one of the larger Mesozoic mammals around, but not nearly as big as some of the Cenozoic taeniodonts would later become.