Kalligrammatids

Did you know butterflies weren’t the first insects to look like butterflies?

Lepidopterans (the group of insects containing moths and butterflies) have been around since the Late Triassic – but it wasn’t until the diversification of flowering plants during the Cretaceous that recognizable moths would have evolved, and true butterflies didn’t actually appear until the early Cenozoic.

Before then, back in the mid-Jurassic about 165 million years ago, a completely different group of insects convergently evolved remarkably butterfly-like features such as large colorful scaled wings and long sucking proboscises.

Known as the kalligrammatids, these insects were giant members of the lacewing group, related to modern forms like antlions and owlflies. But unlike their predatory relatives the kalligrammatids were specialized pollinators, possibly having a mutualistic relationship with the flower-like cones of bennettitales or the pollination drops of some types of conifers. They seem to have originated in China and were found across Asia and Europe by the Late Jurassic, but a few fossils from South America suggest they were even more widespread and may just have a poor fossil record.

They reached wingspans of up to 16cm (~6″), comparable to some of the largest modern butterflies, and often sported conspicuous anti-predator markings on their wings such as stripes and eyespots – so it’s not surprising that they’re often nicknamed the “butterflies of the Jurassic”.

A fossil of a butterfly-like insect. Stripes and eye-spot markings are preserved on its wings.
Markings preserved on the wings of Oregramma illecebrosa, from Yang et al (2014) | CC BY 2.0

Rather ironically, the extinction of the kalligrammatids was probably linked to the rise of the flowering plants that the true butterflies would later be so dependent on. As flowers diversified and plants like the bennettitales declined, the kalligrammatids dwindled and disappeared, with the last known fossil record coming from the mid-Cretaceous of Brazil about 113 million years ago.

But while they were around, I do wonder if they also exhibited some similar behaviors – such as mud-puddling for extra nutrients, and specifically the habit of drinking the tears of larger animals that we see in some species. Perhaps some non-avian dinosaurs like this Dilong occasionally put up with kalligrammatids sitting on their faces!

Antilohyrax

This is not a deer.

In Africa during the Eocene and Oligocene, the main terrestrial herbivores were a different type of mammal entirely: hyraxes, the close relatives of elephants and manatees. Although their only modern representatives are small climbing rodent-like animals, hyraxes were once a much more diverse and widespread group, filling a variety of ecological niches and ranging from the size of rats up to the size of rhinos.

Antilohyrax pectidens was a mid-sized example of these diverse hyraxes, standing about 50cm tall at the shoulder (1′8″) and living around 34-28 million years ago in Egypt. It had a deer-like snout and long slender limbs adapted for running and leaping, with leg bones incredibly similar in size and proportion to modern springbok.

Its incisor teeth were comb-shaped and resembled those of colugos, so it was probably a similar sort of selective browser eating soft leaves and shoots.

Leivanectes

Elasmosaurids are often depicted with noodly snake-like or swan-like necks, but they were probably actually quite stiff and inflexible in life. And while we know from fossilized gut contents that they ate relatively small prey like fish, crustaceans, and cephalopods, exactly how they used their distinctive long necks is still uncertain.

There’s some variation in the sizes and shapes of their teeth, so it’s likely each species was specialized for slightly different feeding styles – we’ve even found a filter-feeding one! – and the recently-named Leivanectes bernardoi here adds in a little more diversity, too.

Living about 115-112 million years ago during the mid-Cretaceous of Colombia, Leivanectes would have been fairly large at around 9m long (29′6″), slightly bigger than the other elasmosaurid species known from the same ancient marine deposits. It had a reduced number of teeth in its jaws, but these teeth were also proportionally larger, suggesting that it may have been tackling bigger tougher prey than its relatives.

Unfortunately it’s currently only known from a single partial skull, so we don’t have any other clues about its ecology.

Tarsomordeo

While modern crocodilians are all semi-aquatic, their Mesozoic ancestors (known as neosuchians) started off fully terrestrial, only really moving into their familiar water-based ecological niches around the mid-Jurassic when the dinosaurs were dominating on land.

But on multiple occasions members of the neosuchian croc lineage independently went back to fully terrestrial habits, and Tarsomordeo winkleri here is one of the most recently discovered examples.

Living about 113 million years ago in the Early Cretaceous of central Texas, USA, Tarsomordeo was surprisingly small, only about 60cm long (2′) – the size of an average cat. Its tiny size even ended up inspiring its name, which translates to “ankle biter”.

It had long slender limbs held in an upright posture, suggesting it was a swift and agile runner capable of chasing after fast-moving prey. Since it lived in a semi-arid environment that seems to have been a major nesting site for the herbivorous Convolosaurus, their hatchlings probably also made up a large part of its diet during the breeding season.

Brindabellaspis

The placoderms are most famous for some of the biggest members of the group such as the giant blade-jawed Dunkleosteus. But these ancient armored fish were actually incredibly diverse in their time, occupying many different ecological niches and developing a wide range of body shapes.

Perhaps one of the most unusual was Brindabellaspis stensioi from the Early Devonian of New South Wales, Australia. Living around 405 million years ago in a tropical reef ecosystem, this early placoderm was quite small, only about 45cm long (1′6″), and it was recently revealed to have had an especially weird head.

Its skull was flattened with its eyes facing upwards on top, its nostrils came out of the corners of its eye sockets, and its jaws were positioned very far forward. It also had a long flat snout packed full of sensory nerves, sort of like the bill of the modern platypus but using a modified form of the pressure-sensing lateral line system instead of electroreception.

It was probably some sort of bottom-feeder, using its bill to feel around on the seafloor for small prey – and there may even have been a longer and wider soft tissue extension to its sensitive snout, giving it even more of a duck-like shape.

Vespersaurus

For around 50 years some very unusual dinosaur tracks have been found in ancient desert sediments in South America: strange footprints showing the impression of only a single toe, a walking style never before seen in any reptiles.

And recently a fossil of what might be the track maker has actually been found.

Named Vespersaurus paranaensis, this new species lived during the Late Cretaceous of Brazil (~90 mya) and was a member of the noasaurid family of theropods, closely related to the weird-jawed Masiakasaurus from Madagascar.

Measuring about 1.5m long (~5′), Vespersaurus was fairly lightly built with legs proportioned for running – and its feet were absolutely unique. Although it had the standard three main toes of a theropod, it bore its weight entirely on the middle toe and held the other digits off the ground. The two raised toes on each foot also had large knife-like claws which may have been used during hunting, vaguely similar to the sickle claws on the feet of dromaeosaurs. But unlike dromaeosaurs these claws weren’t highly curved or pointed, suggesting Vespersaurus used more of a scratching and slashing technique rather than the raptors’ puncture-and-restraint strategy.

Much like ancient horses, it may have developed its single-toed stance as an adaptation for more efficient fast running, possibly to avoid larger predators or to chase down small fast-moving prey like hopping desert mammals.

The known one-toed fossil footprints are actually slightly older than the Vespersaurus fossil, and similar tracks in Argentina have been found dating back to the Late Jurassic (~150mya), so there may have been a long lineage of “one-toed” desert-dwelling noasaurids in South America that haven’t been found yet.

Diabloroter

The exact evolutionary relationships between the earliest amphibians and amniotes is rather murky, and the recently-discovered Diabloroter bolti here is a member of a group in the middle of this uncertain classification.

It was part of a lineage known as the recumbirostrans – small burrowing aquatic salamander-like creatures, many of which had elongated bodies and short tails. Although traditionally considered to be lepospondyl “amphibians”, more recent studies have suggested that these animals might instead have been very early true amniotes related to early reptiles.

Measuring only about 6cm long (2.4″), Diabloroter is known from a single fossil  from Illinois, USA, dating to the Late Carboniferous about 309-307 million years ago. Its anatomy indicates it was probably a herbivore – making it one of the earliest known plant-eating tetrapods – with teeth adapted for scraping at algae-covered surfaces and a rather rotund body that would have housed a large gut region.

It also had fairly well-developed limbs, which were probably used for burrowing like many of its close recumbirostran relatives, but may also suggest it spent a lot of time walking around on land.

Scutellosaurus

The distinctive armored ankylosaurs and stegosaurs were very closely related to each other, and were part of a group of dinosaurs known as the thyreophorans.

One of the earliest known members of this lineage was Scutellosaurus lawleri. Living in Arizona during the Early Jurassic, about 196-183 million years ago, it was a small lightly-built bipedal herbivore, only about 1.2m long (3′11″) – with over half that length being just its unusually long tail.

Its body was covered in rows of hundreds of small bony osteoderms, helping to protect it against larger predators like Dilophosaurus. And this was obviously an evolutionary strategy that worked very well for Scutellosaurus and other early thyreophorans, because within about 20 million years they’d given rise to the first true ankylosaurs and stegosaurs – with the tank-like ankylosaurs being especially successful, spreading to every continent and lasting all the way up until the end-Cretaceous mass extinction.

Eons Roundup 3

Some more recent work I’ve done for PBS Eons!

The eurypterids Hibbertopterus and Brachyopterus, from “When Giant Scorpions Swarmed the Seas
https://www.youtube.com/watch?v=1sQXTXbuLYo


The short-faced bears Plionarctos and Arctotherium, from “The Mystery Behind the Biggest Bears of All Time
https://www.youtube.com/watch?v=KtsOhmBb92E


The big cats Panthera blytheae and Panthera atrox, from “The Ghostly Origins of the Big Cats
https://www.youtube.com/watch?v=oPJnqWke5n8

Buteogallus daggetti

This leggy bird is known as Daggett’s eagle (Buteogallus daggetti), a bird of prey from the Late Pleistocene of southwest North America.

Living between about 2.5 million and 13,000 years ago, it would have stood around 80cm tall (2′7″), with a wingspan of almost 2m (6′6″) and a  fairly hefty body weight of 3kg (6.6lbs). Its feet had less grasping ability than other eagles but it also had particularly strong leg muscles, suggesting it was much better adapted for walking around on the ground.

With its large size, long legs, and terrestrial habits it seems to have convergently evolved to fill the same ecological niche as the modern secretarybird – a grassland-dwelling walking predator that hunted on foot, kicking and stomping small prey animals like snakes, lizards, and rodents.