Although only known from a single fossil skull, this cetacean was probably around 3m long (~9’10”). It had a long snout lined with over 100 small pointed uniformly-shaped teeth, and the bony walls of its inner ears were well-preserved enough to show that it was able to hear narrow-band high frequency sounds – a specific form of echolocation that has convergently evolved multiple times in various modern and extinct toothed whale lineages.
Based on the presence of ancient river-mouth deposits in the area where Romaleodelphis was found, it may potentially have been capable of traversing between marine, brackish, and freshwater environments similar to the modern franciscana.
It was closely related to the waipatiids – a group traditionally classified as platanistoids (the South Asian river dolphin lineage), but more recently proposed as instead representing a separate earlier branch of the toothed whale evolutionary tree.
About 2m long (~6’6″), Aureia had distinctive tusk-like teeth that splayed outwards from its snout, interlocking when its mouth was closed. Along with a flexible neck and its fairly delicately-built skull and jaws, this suggests it was specialized for catching small prey in a “fish trap” of teeth, a unique feeding strategy for a toothed whale.
Along with different feeding specializations in other close relatives like Nihohae, Aureia shows us how multiple species of these ancient Aotearoan cetaceans were able to coexist in the same place and time by diversifying into different novel ecological niches.
Ninoziphius platyrostris was an early beaked whale that lived during the late Miocene (~6 million years ago) in warm coastal waters covering what is now southwestern Peru. Its ancestors appear to have branched off from all other beaked whales very early in the group’s history, indicating a “ghost lineage” going back to at least 17 million years ago.
About 4.4m long (~14’5″), it was less specialized for suction feeding and deep diving than modern beaked whales. Also unlike most modern species its jaws were lined with numerous interlocking teeth, with heavy wear suggesting it may have hunted close to the seafloor, where disturbed sand and grit would have regularly ended up in its mouth along with its prey and steadily ground down its teeth during its lifetime.
Males had a pair of stout tusks at the tip of their upward-curving lower jaw, with possibly a second smaller set of tusks behind them, which were probably used for fighting each other like in modern beaked whales.
Its shallow water habitat and more abrasive diet suggest Ninoziphius’ lifestyle was much more like modern dolphins than modern beaked whales, and other early beaked whales like Messapicetus similarly seem to have occupied dolphin-like ecological niches.
These dolphin-like forms disappeared around the same time that true dolphins began to diversify, possibly struggling to compete for the same food sources, while other beaked whales that had begun to specialize for deep sea diving survived and thrived. Interestingly this ecological shift seems to have happened twice, in two separate beaked whale lineages – although only one of them still survives today – with bizarre bony “internal antlers” even independently evolving in both groups.
Around 2m long (6’6″), it had unusually long tusk-like teeth at the front of its jaws, splaying out almost horizontally forwards and to the sides.
These teeth lay too flat to effectively interlock as a “fish trap”, and their fairly delicate structure and lack of wear marks suggests they also weren’t used for piercing large prey, sifting through gritty sediment, defending against predators, or for fighting each other. But Nihohae did have a highly flexible neck and the ability to quickly snap its jaws from side to side – although with a relatively weak bite force, suggesting it was primarily tackling small soft-bodied prey that could be easily swallowed whole.
Overall its feeding ecology seems to have been similar to modern sawfish, stunning prey such as squid with rapid slashing swipes of its jaws.
Mammalian tusks usually grow in symmetrical pairs with only minor developmental asymmetry, but a few species have evolved much more uneven arrangements.
Odobenocetops peruvianus was a small toothed whale that lived during the Miocene, about 7-3 million years ago, in shallow coastal waters around what is now Peru. Around 3m long (~10′), it was a highly unusual cetacean with binocular vision, a vestigial melon, muscular lips, and a pair of tusks – features convergent with walruses that suggest it had a similar lifestyle suction-feeding on seafloor molluscs and crustaceans.
In males the right tusk was much more elongated than the left, measuring around 50cm long (~1’8″) in this species and up to 1.35m (4’5″) in the closely related Odobenocetops leptodon. Since these teeth were quite fragile they probably weren’t used for any sort of combat, and they may have instead served more of a visual display function.
The woolly mammoth (Mammuthus primigenius) lived across Eurasia and North America during the last ice age, mostly from the Pleistocene about 400,000 years ago to the early Holocene about 10,000 years ago – altohugh a few relict populations survived until around 4,000 years ago in isolated areas of Alaska, Siberia, and eastern Russia.
Around 3m tall at the shoulder (~10ft), these hairy proboscideans had very long curving tusks that were used for digging out vegetation from under snow and ice, scraping bark from trees, and for fighting.
The tusks showed a lot of variation in their curvature, and were often rather asymmetrical, a condition also seen in the closely related Columbian mammoth. Like modern elephants mammoths may have also favored using one side over the other for certain tasks, which over their lifetimes could result in uneven wear exaggerating the natural asymmetry even more.
Toothed whales – the branch of cetaceans that includes modern dolphins, porpoises, beaked whales, and sperm whales – have surprisingly asymmetrical skulls, with some of the bones skewed to one side and just the left nostril forming their blowhole.
Some of the most obvious external manifestation of this lopsidedness can be seen in sperm whales, which have their blowhole at the front left side of their head, and in male narwhals, which usually have a single left-side tusk.
This sort of asymmetry first appeared in the skulls of early toothed whales around 30 million years ago. And since the highest amounts of wonkiness have gone on to develop in lineages that hunt in dark, cluttered, or murky waters, this suggests that the trait is somehow linked to the evolution of complex echolocation.
Some ancient members of the river dolphin lineage also had some additional unusual asymmetry, sometimes having slightly sideways-bending snouts.
Ensidelphis riveroi was one of the weirdest of these, living around the coasts of what is now Peru during the Miocene, about 19 million years ago. Around 3m long (~10′), it had a very long narrow toothy snout that curved distinctly off to the right along its length.
It’s not clear what the function of this bend was, or even if the only known skull actually represents the normal condition for this species. But Ensidelphis’ bendy snoot might have been used to probe around in muddy seafloor sediment or to extract prey from crevices, possibly like an underwater version of the modern wrybill.
Modern beluga whales and narwhals are the only living representatives of the monodontid lineage, found only in cold Arctic and sub-Arctic waters. But this whale family actually first evolved in much warmer climates – and some of them were downright tropical.
It seems to have had a larger number of functional teeth than modern monodontids, and probably didn’t suction feed like its modern close relatives. Instead it may have fed more like most porpoises and dolphins, relying more on speed and snapping jaws to capture prey.
It inhabited the Mediterranean at a time not long after the sea there had mostly dried up and then been rapidly refilled. The presence of warm-water marine species such as bull sharks, tiger sharks, and dugongs in the same fossil beds as Casatia indicates the local climate at the time was hotter than it is today, with tropical temperatures – and suggests that this whale’s ancestors must have originally moved into the replenishing Mediterranean from lower latitudes alongside these other warmth-adapted animals.
This tropical monodontid was also much closer related to modern belugas than modern narwhals are, which raises the possibility that the two living monodontid species actually specialized for colder conditions completely independently of each other rather than descending from a cold-adapted common ancestor. Instead modern belugas and narwhals may have originated from separate warm-water monodontid ancestors who evolved similar cold-tolerant adaptations in parallel as the climate cooled during the onset of the Quaternary ice age, while the rest of their relatives all went extinct.
Known just from fossilized lower jaws and teeth, with some teeth up to nearly 13cm long (~5″), its full life appearance and size are uncertain – but it may have been slightly larger than a modern bottlenose dolphin at around 4.5m long (~14’9″). It’s traditionally been considered to be part of the kogiid family, closely related to modern pygmy and dwarf sperm whales, but some studies disagree with that classification and instead place it in the true sperm whale lineage.
It was probably a predator in a similar ecological role to modern orcas, adapted for hunting prey like squid, fish, and smaller marine mammals. But unlike orcas it wouldn’t have been the apex predator of its ecosystem, subject to predation pressure by even larger carnivores like macroraptorial sperm whales and everyone’s favorite ridiculously huge shark – and as a result it probably had a “live fast and die young” lifestyle similar to modern kogiids and other small-to-medium-sized Miocene physeteroids, rapidly maturing and only living to around 20 years old.
I’ve reconstructed Kogiopsis here as a kogiid-like animal, with a similar sort of shark-like head shape and “false gill” markings. In the background a second individual is depicted displaying “inking” behavior, releasing a defensive cloud of reddish-brown fluid from a specialized sac in its colon.
Last week’s weird-snouted Furcacetus wasn’t the only recently-discovered ancient platanistoid dolphin that deserves some attention.
Ensidelphis riveroi was described in the same paper, and also lived in the coastal waters around Peru during the early Miocene, about 19 million years ago. It was a little less closely related to its modern river-dwelling cousins than Furcacetus, and was slightly larger, estimated to have measured about 3m long (9’10”).
But what made it weird was its incredibly long snout, lined with around 256 tiny sharp teeth, which also curved markedly to the right side along its 55cm (1’10”) length.
With only one known skull of Ensidelphis it’s impossible to tell if this was a natural condition for the species or if it was some sort of anomalous individual. It doesn’t seem to be a deformation of the fossil, at least.
Similar unusual right-side bending has been seen in the skulls of a few individuals of modern South Asian river dolphins, franciscanas, and Amazon river dolphins, possibly caused by injuries at a young age being exaggerated as the animals grew. However, many other platanistoid dolphins (especially squalodelphinids) are known to have naturally had similar bends in their snouts – but always to the opposite side, curving to the left instead of the right.
But naturally bent or not, what might Ensidelphis have been doing with that incredibly lengthy snoot?
Its long slender jaws would have had a fairly weak bite, so it probably wasn’t able to catch large prey, and it had a very flexible neck. Possibly it swam along near the seafloor using its snout to probe and sweep around in the sediment for buried small prey.
Modern South Asian river dolphins swim along on their sides while doing this – almost always on their right sides, interestingly enough – and if Ensidelphis did the same sort of thing then a snout bent in that direction might have been an advantage.
The two living subspecies of the South Asian river dolphin are the last surviving members of a lineage known as the Platanistoidea, an early evolutionary branch of the toothed whales. This group was once much more diverse and widespread than their modern representatives, found in oceanic habitats around the world from the Oligocene to the mid-Miocene.
Manyofthem had forward-pointing protruding teeth at the tips of their snouts, resembling those of some plesiosaurs or pterosaurs, suggesting they were a convergent adaptation used for snagging hold of slippery soft-bodied aquatic prey.
Furcacetus flexirostrum is one the newest additions to this group, named and described in late March 2020. It lived in Pacific coastal waters around Peru during the early Miocene, about 19-18 million years ago, and was about the same size as modern South Asian river dolphins at around 2.3m long (7’7″).
And it had a uniquely-shaped snout for a cetacean, curving upwards for most of its length but then turning downwards right at the tip, which along with large forward-pointing teeth gave its jaws a vaguely crocodilian appearance.
Much like slender-snoutedcrocodilians and spinosaurids, this arrangement would have allowed Furcacetus to make quick bites at small-fast-moving prey like fish and crustaceans.