It Came From The Wastebasket #02: What Makes A Monoclonius?

The first fossil remains of Monoclonius crassus were discovered in the Late Cretaceous Judith River fossil beds (~75 million years old) in 1876 in Montana, USA. It was one of the many dinosaur species hurriedly named as part of the Bone Wars, and was described based on a mixture of bones from several different sites.

At first much of this dinosaur’s anatomy was poorly understood, and at first it was misidentified as a hadrosaur. The skull remains were fragmentary and ceratopsians hadn’t yet been identified as a group, so Monoclonius‘ horns weren’t even recognized as being horns and a piece of the frill was initially misinterpreted as part of a breastbone.

Once the much better-preserved Triceratops was discovered in 1889, and the existence of ceratopsians was recognized, Monoclonius was re-examined and identified as a similar dinosaur – and three more species were quickly described within the genus, also based on very fragmentary fossils.

An illustration of Monoclonius, a dubious species of horned ceratopsian dinosaur. It has a parrot-like beak, a long straight nose horn, and a pair of small stubby brow horns. Its large bony neck frill is rimmed with small spikes, with a pair at the very top being longer and curling sharply downwards against the front of the frill. Its body is bulks and quadrupedal with a a thick tapering tail, and there are bumpy scales and sparse short quill-like spines on its back. It's colored mottled orange-and-brown, and there are hints of bright blue on its frill.
Monoclonius crassus

Then for a while afterwards every ceratopsid fossil that wasn’t clearly a Triceratops was then just dumped into Monoclonius, quickly turning the genus into a wastebasket full of dubious indistinct remains.

But then

The new challenger screen from Super Smash Bros Ultimate, with the character silhouette replaced by that of Centrosaurus, a horned ceratopsian dinosaur. Text on the image reads "A new foe has appeared! Challenger approaching!"

Centrosaurus apertus was named in 1904, from the similarly-aged Dinosaur Park Formation in southern Alberta, Canada. It had originally been one of the various species of Monoclonius, but was now claimed to be different enough to deserve its own separate genus name – and this started a decades-long controversy between several paleontologists.

Over the new few decades arguments went back and forth over whether Centrosaurus was actually valid or if it was just a junior synonym of Monoclonius. As more and better ceratopsid fossil material was discovered several other Monoclonius species were eventually split off into their own separate genera, too, creating Styracosaurus, Chasmosaurus, and the somewhat dubious Brachyceratops. But other new species also continued to be lumped into Monoclonius up until 1990, meaning that over its century of existence this wastebasket taxon had at one point or another contained at least 16 different species.

During the 1990s opinion began to turn against Monoclonius, increasingly regarding it as a dubious name. Its original type specimen was a chimera of multiple different individuals (and possibly multiple different species), and it just didn’t have any distinct enough anatomical features to distinguish it from other ceratopsids.

Centrosaurus, meanwhile, was further validated by the discovery of huge bonebeds containing thousands of individuals, making it into one of the best-known of all ceratopsians.

Today Monoclonius‘ name remains attached to a few fossil specimens, but only the ones that are too indistinct to classify as anything else. Some “Monoclonius” have also turned out to actually be juveniles and subadults of other ceratopsians – it seems many young centrosaurines had a Monoclonius-like stage in their growth, before they went on to develop their own species’ distinctive horn and frill shapes.

So Monoclonius may never have been a distinct genus at all – it was just a bunch of different ceratopsian teenagers!

Spectember 2022 #01: Arboreal Ornithopod

Despite some minor delays, it’s time once again for #Spectember – when I dive back into the big pile of speculative evolution concepts that you all submitted to me in 2020, and try to get through a few more of the backlog.

(…There’s still over 50 of them left. This is going to take a while.)

So today’s concept comes from an anonymous submitter, who requested an arboreal ornithopod dinosaur:

Continue reading “Spectember 2022 #01: Arboreal Ornithopod”

Jakapil

The thyreophorans were heavily armored ornithischian dinosaurs, with their most famous representatives being the stegosaurs and the ankylosaurs. Earlier members of the group were all small bipedal animals covered in rows of prickly osteoderms, and until now these “primitive” forms were known only from the early-to-mid Jurassic, around 200-165 million years ago.

But now the recent discovery of Jakapil kaniukura is suggesting a lineage of early thyreophorans actually survived for much much longer than previously thought – all the way into the Late Cretaceous, about 97-94 million years ago.

Just 1.5m long (5′), Jakapil lived in what is now southern Argentina, in an ancient desert with a braided river system. It was bipedal, with a short beak, small arms, and a body bristling with spiky armor, and its unusually deep lower jaw and heavily worn teeth indicate it fed on rather tough vegetation that required a lot of chewing to process.

It’s currently only known from somewhat fragmentary remains, so reconstructions of its full appearance are rather speculative and there’s already been some dispute about whether Jakapil actually was a thyreophoran. One proposal is that it shared a lot of anatomical features with early ceratopsians instead, which if true would make it an incredibly weird armored ceratopsian, and also the first definitive member of that group from South America. But the ceratopsian-like features could also just be due to convergent evolution – and a Jakapil-like dinosaur might actually help explain the only other known dubious South American “ceratopsian” Notoceratops, and the similarly-disputed Australian Serendipaceratops.

But whatever it was – late-surviving basal thyreophoran, southern armored ceratopsian, or even a previously unknown lineage of ornithishcians entirely new to science – it’s an exciting and unexpected discovery.

Rajasaurus

Abelisaurids were a group of theropod dinosaurs characterized by short snouts, bony ornamentation on their skulls, tiny stiff arms, and stocky legs. Known mostly from the southern continents of Gondwana, they were the dominant predators in these regions and are thought to have been specialized hunters of titanosaurian sauropods.

Rajasaurus narmadensis lived in what is now western India during the Late Cretaceous, about 67 million years ago. Around 7m long (23′), it had very rough-textured thickened bone on the top of its snout, along with a short rounded horn on its forehead that was probably used for display or headbutting behaviors.

India at this time was an isolated island continent located off the east coast of Africa, and Rajasaurus‘ ancestors probably island-hopped across from then-nearby Madagascar – where its closest known relative lived, the very similar-looking Majungasaurus.

Annakacygna

Around 11 million years ago, during the late Miocene, much of what is now northern Honshu in Japan was submerged under fairly deep ocean waters. This offshore environment was inhabited by a variety of ancient sea-going tetrapods such as turtles, desmostylians, seal-like allodesmines, archaic baleen whales, and early oceanic dolphins… and also one very unexpected bird.

Meet the flightless marine swan.

Annakacygna hajimei, also known as the Annaka short-winged swan, was the same size as a modern black swan at about 1.2m long (~4′), but had a combination of features unlike any of of its living close relatives. Its head was proportionally large, and it had a long spoon-shaped bill like a shoveler duck, lined with comb-like structures for filter-feeding on plankton. It also had widened hips that would have helped keep it stable floating in rough waters, its tail was highly mobile and muscular, and its feet resembled those of diving birds like loons.

With thickened heavy bones and shortened forearms it was clearly completely unable to fly, but its reduced wings appear to have been highly specialized rather than just vestigial. Its shoulders were extra flexible while its wrists had a more limited range of motion, allowing it to fold its wings into a distinctive half-raised position similar to modern mute swans.

It probably used its wings and tail to perform elaborate “busking” visual displays, and also to carry and protect its young on its back while out at sea – basically making itself into a living swan boat.

Sierraceratops

In the late 1990s a partial skeleton of a ceratopsian was discovered in New Mexico, USA. These remains were initially thought to belong to Torosaurus, but after more of the specimen was recovered in the mid-2010s it became clear the bones actually represented an entirely new species of horned dinosaur – officially named in 2022 as Sierraceratops turneri.

Sierraceratops lived during the Late Cretaceous, around 72 million years ago, in what at the time was the southern region of the island continent of Laramidia. About 4.6m long (~15′), it had fairly short chunky brow horns, long pointed cheek horns, and a relatively large frill.

It was part of a unique lineage of ceratopsians that were endemic to southern Laramidia, with its closest known relatives being Bravoceratops from western Texas and Coahuilaceratops from northern Mexico.

Falcatakely

Modern birds’ upper beaks are made up mostly from skull bones called the premaxilla, but the snouts of their earlier non-avian dinosaur ancestors were instead formed by large maxilla bones.

And Falcatakely forsterae here had a very unusual combination of these features.

Living in Madagascar during the Late Cretaceous, about 70-66 million years ago, it was around 40cm long (1’4″) and was part of a diverse lineage of Mesozoic birds known as enantiornitheans. These birds had claws on their wings and usually had toothy snouts instead of beaks, and many species also had ribbon-like display feathers on their tails instead of lift-generating fans.

Falcatakely had a long tall snout very similar in shape to a modern toucan, unlike any other known Mesozoic bird, with the surface texture of the bones indicating it was also covered by a keratinous beak. But despite this very “modern” face shape the bone arrangement was still much more similar to other enantiornitheans – there was a huge toothless maxilla making up the majority of the beak, with a small tooth-bearing premaxilla at the tip.

This suggests that there was more than one potential way for early birds to evolve modern-style beaks, and there may have been much more diversity in these animals’ facial structures than previously thought.

Amargasaurus

Amargasaurus cazaui was a sauropod dinosaur with a very distinctive-looking skeleton, sporting a double row of long bony spines along its neck and back. It lived in what is now Argentina during the Early Cretaceous, about 129-122 million years ago, and was fairly small compared to many other sauropods, reaching about 10m in length (~33′) with a proportionally short neck compared to its body size.

And despite being known from fairly complete skeletal remains there’s still a lot we don’t know about this dinosaur – especially what was actually going on with those vertebral spines. While it’s sometimes been depicted with skin sails over the spines, for the last couple of decades the general opinion has trended towards them being more likely to have been covered by spiky keratinous horn-like sheaths.

But recently that’s been brought back into question. A detailed study of the microscopic bone structure of Amargasaurus‘ spines shows no evidence for keratin attachment and instead found textures associated with skin coverings, along with an extensive web of ligaments connecting the spines to each other along each row.

So maybe it had big flashy sails after all!

April Fools 2022: The Aquatic Dinosaur That Wasn’t

So, Spinosaurus wasn’t technically the first known aquatic non-avian dinosaur.

That title instead temporarily went to Compsognathus corallestris.

While the idea that hadrosaurs and sauropods were wallowing swamp-dwellers had been completely abandoned at the start of the Dinosaur Renaissance, the new view of dinosaurs as active sophisticated animals led to a surprising aquatic hypothesis during the early days of this paleontological revolution.

A specimen of the small theropod Compsognathus discovered in southeastern France in the early 1970s was only the second skeleton ever found of this dinosaur, and came over a century after the first. It was initially thought to represent a new species since it was about 50% larger than the German specimen of Compsognathus longipes, and it seemed to have something very unusual going on with its hands – its forelimbs were somewhat poorly-preserved and distorted, and had traces of some sort of large fleshy structure around the hands that was interpreted as representing elongated three-fingered flippers used for swimming.

This wasn’t necessarily as ridiculous of an idea as it might sound. Compsognathus lived during the Late Jurassic, about 150 million years ago, at a time when Europe was a group of islands in a shallow tropical sea. A semiaquatic dinosaur specialized to swim and dive, hunting the abundant aquatic prey in its environment, and easily able to island-hop all around the European archipelago seemed at least somewhat plausible, and reconstructions of fin-handed C. corallestris even appeared in several popular dinosaur books of the time.

But it didn’t last.

Within just a few years doubt was being cast on this idea, and further studies of both known Compsognathus skeletons in the late 1970s and early 1980s concluded that C. corallestris was actually a fully-grown adult individual of the juvenile C. longipes. The French Compsognathus had normal-looking hands for its kind after all, with two large clawed fingers and a vestigial third finger, and the “flipper” impressions had just been ripples in the fossil slab.

For a long time after that the general view became that there just weren’t any aquatic non-avian dinosaurs at all – but more recent discoveries like the new Spinosaurus material and Halszkaraptor are starting to suggest that some of these animals were much more at home in the water than previously thought.

Something resembling Compsognathus corallestris might still surprise us in the future.

Retro vs Modern #23: Spinosaurus aegyptiacus

Spinosaurid teeth were first found in the 1820s in England, but were misidentified as belonging to crocodilians. It wasn’t until nearly a century later that Spinosaurus aegyptiacus was discovered and recognized as a dinosaur – and it would be another century after that before we really started to learn anything about it.


1910s

The first fossils of Spinosaurus were discovered in Egypt in the 1910s. With only a few fragments of its skeleton known it was an enigma right from the start, hinting at a large and very strange theropod dinosaur with crocodile-like teeth, an oddly-shaped lower jaw, and elongated neural spines on its vertebrae that seemed to be part of a huge sail.

A few possible extra fragments were found in the 1930s, but overall these few pieces were all that was known of Spinosaurus for a long time.

The fossils were kept in the Paleontological Museum in Munich, Germany,a building that was severely damaged during a bombing raid in World War II. Many important specimens were destroyed, including Spinosaurus, and only the published drawings and descriptions of the bones remained.

So for the next several decades Spinosaurus remained a very poorly-understood mystery. During this period it was generally depicted as a generic “carnosaur“, often modeled on something like Megalosaurus, in the standard-for-the-time tripod pose and with a Dimetrodon-like sail on its back.

Interestingly a 1930s skeletal reconstruction shows Spinosaurus with an unusually long torso and fairly short legs, details that are surprisingly modern despite the retro posture.


1990s

In the 1980s some partial snout bones from Niger were recognized as having similarities with the jaw of Spinosaurus. Around the same time the fairly complete skeleton of Baryonyx was discovered, and along with further spinosaurid discoveries in the mid-to-late 1990s a decent idea of what Spinosaurus might have looked like began to emerge.

It was reconstructed with a long kinked crocodilian-like snout, a ridged bony crest in front of its eyes, an S-curved neck, and large thumb claws on its hands – an interpretation that was heavily popularized by Jurassic Park III in the early 2000s, bringing this enigmatic dinosaur to public attention and portraying it as a fearsome super-predator bigger than Tyrannosaurus.


2020s

Despite attempts to locate more complete Spinosaurus remains, only fragments continued to be found, and it remained a frustratingly poorly-known species even into the early 2010s.

Finally, in 2014, almost a full century after it was first described and named, Spinosaurus started to reveal its secrets with the announcement of the discovery of the most complete skeleton so far, discovered in the Kem Kem fossil beds in Morocco. Its body was still only partially represented, but it included skull fragments, part of a hand, a complete leg and pelvis, some sail spines, and several vertebrae from the neck, back, and tail.

And nobody was expecting what these pieces revealed.

It had a very long torso and proportionally short stumpy legs, and was reconstructed with a huge distinctive “M-shaped” sail on its back. Its feet had flat-bottomed claws and its “dewclaw” toe was enlarged into an extra weight-bearing digit – adaptations for spreading its weight over soft muddy ground, and suggesting its feet may also have been webbed. Initially it was also presented as possibly being quadrupedal, due to how far forward its center of mass seemed to be, reviving an odd idea from the late 20th century.

Along with its long crocodile-like head and conical teeth, this was interpreted as evidence it was a semiaquatic fish-eating swimming animal – potentially making it the first known semiaquatic non-avian dinosaur. Spinosaurids had been suggested to be specialized piscivores before, especially since Baryonyx had been found with fish scales in its stomach, but they were generally assumed to be more like modern grizzly bears, wading into water to hunt but not being habitual swimmers. Spinosaurus’ weird croco-duck proportions, however, seemed like they might be much more suited to watery habitats than to the land.

Since Spinosaurus had become a popular dinosaur with the general public by that point, the discovery was big news – and a big controversy for a while. It was so bizarre that some paleontologists were skeptical of the radical new interpretation, wondering if the measurements of the skeleton were correct or if the short legs were even from the same individual or the same species as the rest of the bones.

After a while the new proportions were accepted as fairly accurate, and over the next few years attention turned to instead figuring out just how this animal worked and how aquatic it actually was. An earlier isotope analysis of its teeth supported a semiaquatic lifestyle similar to crocodiles and turtles, but a buoyancy study argued that it might not have been able to dive below the water suface and its sail made floating unstable – but also found that its center of mass was closer to its hips than previously calculated, suggesting it could walk bipedally after all.

Then in 2020 came another surprise: more of the tail of the new specimen had been found, and it was just as weird as the rest of Spinosaurus. Its tail was a huge vertically flattened paddle-like fin supported by long thin neural spines and chevrons, resembling a giant eel or newt more than a dinosaur and also giving some more weight to the idea that it was a swimmer.

Our modern view of Spinosaurus is still evolving, and likely to be full of even more surprises in the future as we discover more about this unique dinosaur. But we at least know it lived in what is now North Africa during the Late Cretaceous, about 99-93 million years ago, and whether it was a swimmer or wading generalist predator it was one of the largest known theropods to ever live, estimated to have reached around 16m long (~52ft).

While the “M-shaped” sail reconstruction has been popularized by the recent discoveries, the exact shape of this structure is still unknown. Like with other sailbacked animals it’s also not clear what it was for, with ideas including temperature regulation, visual display, supporting a fatty hump, and a potential hydrodynamic adaptation.

EDIT: And while I was working on this entry (late March 2022) I missed that another study had just come out with more anatomical support for swimming Spinosaurus!