Cambrian Explosion Month #08: Phylum Hemichordata – Pterobranchia

Now we get to the bilaterians, all the animals with bilateral symmetry as an ancestral feature.

The hypothetical common ancestor of all bilaterians (the “urbilateria“) was probably a tiny worm-like species, and likely originated sometime in the early Ediacaran Period. The earliest definite body fossils of bilaterians come from about 558 million years ago, and possible burrow traces are a little older, from about 585 million years ago – but it was during the Cambrian Explosion that this group rapidly diverged into a wide variety of forms and ecological niches.

The deuterostomes are one of the two major evolutionary branches of the bilaterians, made up of modern hemichordates, echinoderms, and chordates (including the vertebrates). They split from their last common ancestor with the protostomes sometime during the Ediacaran, but the earliest probable deuterostome fossils are weird tiny potato-like blobs from the very start of the Cambrian.

(…We’ll talk about those later in the month.)


Hemichordates are the closest living relatives to echinoderms, and are a small phylum with only around 130 known modern species (most of which are acorn worms). But in the distant past they were much more numerous, with graptolites being major components of Paleozoic planktonic ecosystems.

All living members of this lineage have a three-part body plan, but they’re otherwise very different in both appearance and ecology. Acorn worms are solitary worm-like animals living on in the sediment of the sea bed, and are mostly detritivores, while pterobranchs are tiny colonial filter-feeders that build protective tubular structures.

Continue reading “Cambrian Explosion Month #08: Phylum Hemichordata – Pterobranchia”

Cambrian Explosion Month #07: Phylum Cnidaria – The Weird Ones

Odd shell-like structures that resemble angular ribbed cones with four-way symmetry appear in the fossil record starting around the mid-to-late Cambrian (with a possible Ediacaran record).

Known as conulariids, these fossils are so distinctive and different from anything else that for a long time their evolutionary affinities were unknown, and they were considered to be a “problematic” group. But in recent years they’ve been identified as being cnidarians, generally thought to be close relatives of modern stalked jellyfish.

Continue reading “Cambrian Explosion Month #07: Phylum Cnidaria – The Weird Ones”

Cambrian Explosion Month #05: Phylum Cnidaria – Anthozoa

Cnidarians are a diverse group that includes modern corals, sea anemones, sea pens, jellyfish, hydra, and even some parasitic forms. They’re the closest relatives of bilaterians in the animal evolutionary tree, and their ancestry goes back at least 560 million years into the Ediacaran Period, with the polyp-like Haootia being one of the earliest definite cnidarian fossils – and molecular clock estimates suggest the group might have actually originated much much earlier than that, possibly as much as 740 million years ago.

The anthozoan lineage of cnidarians (corals, anemones, and sea pens) spend their adult lives as polyps attached to the seafloor, either solitary or colonial, and since many lineages have hard calcium carbonate skeletons their fossil record is generally much better than that of the soft-bodied medusozoan jellyfish.

While corals are major contributors to reef ecosystems in modern times, back during the Cambrian they were actually rather rare. The weird little archaeocyathan sponges were the main reef-builders in the early-to-mid Cambrian, and after their decline reefs were mainly formed by algae and other types of sponges.

But, sometimes, growing among these reefs were also some tiny Cambrian corals.

Continue reading “Cambrian Explosion Month #05: Phylum Cnidaria – Anthozoa”

Cambrian Explosion Month #04: Phylum Ctenophora (And Petalonamae?)

Much like the sponges, the ctenophores (commonly known as “comb jellies”), are one of the oldest animal lineages, but their exact position in the evolutionary family tree is a little uncertain. Traditionally they’re placed between sponges and all other animals, as the earliest branch of the eumetazoans, but some studies have suggested that they might be much more ancient, possibly branching off before even the sponges did.

And while their fossil record is poor due to their soft gelatinous bodies, some of what we do have is starting to hint that their ancestry was very different from their modern jellyfish-like representatives – and they might even have links to some weird Precambrian creatures.

Continue reading “Cambrian Explosion Month #04: Phylum Ctenophora (And Petalonamae?)”

Cambrian Explosion Month #03: Phylum …Porifera?

Sponges were major reef builders during the Cambrian Explosion, and for the first half of the Cambrian Period the dominant reef-forming group were the bizarre archaeocyathans.

Although their reign was geologically short, lasting only about 15 million years, these tiny calcified sponges were incredibly numerous and diverse during that time, with hundreds of different species known from warm shallow marine waters all around the world. They came in a huge range of shapes, including cups, cones, funnels, towers, and irregular blobs, and were so weird that they weren’t even properly recognized as being sponges until the 1990s.

Continue reading “Cambrian Explosion Month #03: Phylum …Porifera?”

Cambrian Explosion Month #02: Phylum Porifera

Sponges are one of the very oldest branches of the animal family tree, originating sometime in the Proterozoic Eon. Fossils are known from at least 600 million years ago, and their ancestry probably goes back even further back than that into the Cryogenian Period or late Tonian Period, at least 750 million years ago.

So it’s not especially surprising that sponges were already common and highly diverse in the Cambrian, with representatives of the major modern groups all present – demosponges, glass sponges, and calcareous sponges.

Continue reading “Cambrian Explosion Month #02: Phylum Porifera”

Weird Heads Month #26: Curious Cambrian Creatures

During the Cambrian explosion, a time full of incredibly weird-looking evolutionary experiments, Opabinia regalis was one of the weirdest of all – so ridiculous, in fact, that when its anatomy was first revealed at a presentation the audience laughed.

Known from the mid-Cambrian Burgess Shale fossil deposits in Canada, this bizarre creature lived around 508 million years ago and had a body measuring just 4-7cm long (~1.5-2.75″).

It had five stalked eyes on its head, and a long flexible proboscis that resembled a vacuum cleaner hose ending in a pincer-like grasping structure. Its mouth was located on the bottom of its head, behind the base of its proboscis, and the opening pointed backwards forming a U-bend in its digestive tract.

The rest of its segmented body had overlapping swimming lobes and a tail fan, and small triangular structures that may have been legs on its underside.

It was probably a bottom-feeding predator or a detritvore, swimming along above the seafloor using its proboscis to snatch up small soft prey or organic material and passing it up to its mouth. 

It also seems to have been a fairly rare member of the Burgess Shale ecosystem, with less than 50 specimens known from the thousands of fossils found there.

For a while Opabinia was thought to represent a completely new phylum, but after further discoveries of similar animals like Anomalocaris it’s now considered to be a “stem-arthropod”, a close evolutionary cousin to modern insects, arachnids, myriapods, and crustaceans. Its exact relationships with other stem-arthropods are still being debated, however, and some studies suggest its closest living relatives may actually be tardigrades.

Capinatator

Capinatator praetermissus, an arrow worm from the Mid-Cambrian of Canada (~508 mya). Discovered in the famous Burgess Shale fossil deposits, it was one of the earliest known arrow worms and also much larger than most modern forms, measuring around 10cm in length (4″).

Its mouth was surrounded by 50 hooked spines, which could be extended out to grasp onto its prey – probably feeding on whatever smaller animals it could catch – but when not in use these spines would have been kept folded up inside a fleshy “hood” around its head.

It may have been a transitional form between early large-predator arrow worms and the smaller plankton-feeders that the group later became.