Neolicaphrium

Neolicaphrium recens here might look like some sort of early horse, but this little mammal was actually something else entirely.

Known from southern South America during the late Pleistocene to early Holocene, between about 1 million and 11,000 years ago, Neolicaphrium was the last known member of the proterotheriids, a group of South American native ungulates that were only very distantly related to horses, tapirs, and rhinos. Instead these animals evolved their remarkably horse-like body plan completely independently, adapting for high-speed running with a single weight-bearing hoof on each foot.

Neolicaphrium was a mid-sized proterotheriid, standing around 45cm tall at the shoulder (~1’6″), and unlike some of its more specialized relatives it still had two small vestigial toes on each foot along with its main hoof. Tooth microwear studies suggest it had a browsing diet, mainly feeding on soft leaves, stems, and buds in its savannah woodland habitat.

It was one of the few South American native ungulates to survive through the Great American Biotic Interchange, when the formation of the Isthmus of Panama allowed North and South American animals to disperse into each other’s native ranges. While many of its relatives had already gone extinct in the wake of the massive ecological changes this caused, Neolicaphrium seems to have been enough of a generalist to hold on, living alongside a fairly modern-looking selection of northern immigrant mammals such as deer, peccaries, tapirs, foxes, jaguars… and also actual horses.

Some of the earliest human inhabitants of South America would have seen Neolicaphirum alive before its extinction. We don’t know whether they had any direct impact on its disappearance – but since the horses it lived alongside were hunted by humans and also went extinct, it’s possible that a combination of shifting climate and hunting pressure pushed the last of the little not-horses over the edge, too.

Strange Symmetries #23: Convergent Earvolution

Although it’s not visible externally, owls have one of the most striking modern examples of asymmetry. The ears of many species are uneven, with the right ear opening positioned higher up than the left, giving them the ability to pinpoint the sounds of their prey much more accurately.

But surprisingly this isn’t a unique anatomical trait that only ever evolved once in their common ancestor.

Instead, multiple different lineages of owls have actually convergently evolved wonky ears somewhere between four and seven separate times.

The boreal owl (Aegolius funereus), also known as Tengmalm’s owl, is a small 25cm long (~10″) true owl found across much of the northern parts of both Eurasia and North America. While most other owls’ asymmetrical ear openings are formed just by soft tissue, the boreal owl’s lopsided ears are actually visible in the bones of its skull.

But despite how many times owls have convergently evolved asymmetrical ears, and how successful this adaptation has been for them, for a long time it seemed to be something that no other animals have ever mimicked.

In the early 2000s asymmetric ears were reported in the skulls of some troodontid dinosaurs, which seem to have been nocturnal hearing-based hunters similar to owls, but proper details on this feature still haven’t been formally published.

Then, just a couple of weeks ago, another example was finally announced.

The night parrot (Pezoporus occidentalis) is a small ground-dwelling parrot found in Australia, close to the same size as the boreal owl at around 22cm long (~9″). Critically endangered and very elusive, it’s rarely seen and little is known about it – and it was presumed extinct for much of the 20th century, until more recent sightings of living individuals confirmed that the species is still hanging on.

Recent studies of preserved museum specimens have revealed that it seems to have poor night vision but excellent hearing, and that its right ear opening is noticeably asymmetrical, bulging out sideways from its skull. Much like owls the night parrot relies on acute directional hearing to navigate in darkness, but since its diet consists mainly of seeds it’s probably not using this ability to locate food sources. Instead it may be listening out to keep track of the precise locations of other parrots, and for the approach of predators – so its sharp sense of hearing may be the reason this unique bird has so far just barely managed to survive the presence of invasive cats and foxes.

Strange Symmetries #15: Serrated Saw-Snoots

Long flattened snouts lined with pointy tooth-like denticles have convergently evolved at least three separate times in cartilaginous fish: in modern sawsharks and sawfish, and in the extinct sawskates.

This repeated “pristification” suggests that saws are just incredibly useful and relatively “easy to evolve” structures for these types of fish, being both highly sensitive to bioelectric fields and able to physically slash and stab to kill prey.

Onchopristis numida was a sawskate known from what is now Northern and Western Africa during the mid-Cretaceous, about 95 million years ago. Up to about 3m long (~10′), it lived in both saltwater and freshwater, and was probably a bottom-dwelling ambush predator similar to modern angelsharks.

Whenever a denticle was lost from its saw, a larger one would grow to replace it, and over the life of an Onchopristis this resulted in an increasingly extreme amount of saw asymmetry.

Modern pristified fish also have rather asymmetrical saws. Sawfish are commonly born with a different number of denticles on each side, while sawsharks add extra denticles of varying sizes as they age, with the ongoing replacement of lost denticles resulting in more uneven arrangements over their course of their lives.

It’s not clear if the asymmetry gives any sort of advantage to these fish – but if nothing else it probably doesn’t cause them any disadvantage, so there’s no evolutionary pressure to stay more symmetrical.

Cabarzia

Cabarzia trostheidei here lived during the early Permian in what is now Germany, about 295 million years ago.

Despite its very lizard-like appearance it was actually part of the varanopid lineage, a group of scaly amniotes traditionally classified as early synapsids (distant relatives of modern mammals), but which more recently have been proposed to instead be sauropsid reptiles closer related to early diapsids.

It was around 50cm long (1’8″), and its short arms, long legs, slender body, and long tail suggest it was capable of shifting into a bipedal posture when running at high speeds, similarly to some modern lizards – probably mainly to escape from larger predators, but possibly also used to pursue fast-moving prey like flying insects.

And whether varanopids were actually synapsids or sauropsids, this makes Cabarzia the earliest known example of an animal running on two legs.

Serrasalmimus

The pycnodonts were a diverse group of ray-finned fish that were found in shallow coastal waters from the late Triassic to the late Eocene (~215-37 million years ago). They usually had deep but very narrow body shapes with a disc-like appearance, convergently similar to modern reef fish like marine angelfish or butterflyfish – but some looked much weirder, with elaborate horns and spines, long snouts, or vertically-stretched bodies.

Most of them also had jaws full of round flat teeth used to crush hard-shelled prey, but some may instead have been herbivorous grazers similar to parrotfish.

And a couple of lineages even became carnivores.

Serrasalmimus secans lived in what is now Morocco during the late Paleocene, about 59 million years ago. Although only known from its jaws, the size of the fossil material suggests it was fairly large for a pycnodont, possibly around 80cm long (~2’8″).

It had sharp flesh-cutting teeth similar to those of modern piranha, but with a surprising evolutionary twist. Unlike any other known ray-finned fish, Serrasalmimus‘ teeth were true shearing carnassials anchored into bony sockets, with new replacement teeth forming directly below each current tooth – a very specific arrangement of features previously only known in mammals.

This is an especially remarkable example of convergent evolution because on land placental carnivorans were developing their own carnassials at the same time, just a few million years after the K-Pg mass extinction. Both mammals and pycnodonts were simultaneously taking advantage of the vacant predatory roles in their respective ecosystems, and ended up with incredibly similar tooth adaptations as a result.

Gaylordia

Gliding has convergently evolved multiple times within mammals, from the Jurassic-aged haramiyids and volaticotheres to numerous species of modern marsupials, rodents, and colugos.

And yet despite the huge diversity of gliding mammals, and their particular prevalence in tropical forests, there’s an entire continent famous for its rainforests that’s somehow completely lacking any modern examples: South America.

It’s not clear why the gliding lifestyle never took off in South America, but the continent is surprisingly devoid of any other gliding vertebrates, too. The only exceptions are a few species of flying frogs in the northwestern tropical forests around Colombia.

But back in the early Eocene, about 53-50 million years ago, there was at least one South American gliding mammal. Some fossil limb bones found in the Itaboraí Formation in southeastern Brazil look very much like those of a gliding mammal – long and thin, with a locking elbow joint, knees adapted for jumping, and flexible ankles typical of tree-climbers.

These remains haven’t been given a new scientific name, however, because there’s a good chance they belong to an already-described species. Fossils from Itaboraí are found disarticulated, broken, and with bones of multiple different species jumbled together, so most fossil mammals named from the site have been based on their more easily distinguishable teeth and jaw fragments.

The problem is matching those teeth with these bones.

Currently the best identity guess based on size is Gaylordia macrocynodonta. This mammal would have been around 30cm long (1′), about the size of a modern rat, and had distinctive large canine teeth. It used to be classified as a marsupial related to opossums, but more recent studies have found it to have actually been a marsupialiform metatherian instead, much more closely related to Pucadelphys and sparassodonts than to any modern true marsupials.

Gaylordia‘s crushing molars suggest it was carnivorous, able to crunch through bones or hard-shelled invertebrate prey. This would be a very unusual diet for a gliding mammal, since most other mammalian gliders are herbivores or omnivores – the only other known predatory examples were the volaticotheres over 110 million years earlier.

Palaeosinopa

Cimolestans were one of the major mammal lineages that survived through the K-Pg mass extinction 66 million years ago. Closely related to early placentals, they had a burst of diversification during the first half of the Cenozoic and rapidly evolved into a wide range of specialized forms – some uniquely weird, and others convergently resembling more familiar modern animals like squirrels, bears, ground sloths, and hippos.

And one group known as the pantolestids were incredibly otter-like.

(Because synapsids love them some lutrinization.)

Palaeosinopa didelphoides here lived during the mid-Eocene, about 52 million years ago, in what is now the Mountain West region of the USA. It was similar in size to a small otter, about 1m long (3’3″), and had a streamlined body with a well-muscled neck, short powerful forelimbs, slightly longer hindlimbs, and a very long tail.

Inhabiting a subtropical lake ecosystem, it probably swam using both hindlimb paddling and otter-like tail undulations. Its strong jaws and teeth suggest it was specialized for crunching hard shellfish prey, but so far preserved gut contents have only shown fish bones and scales. Fairly large claws indicate it was also able to dig out burrows similarly to modern otters and beavers.

Although pantolestids were never particularly common animals they were quite widespread, expanding their range from their evolutionary origins in North America across to Europe and eventually into Asia. A cooling and drying climate at the end of the Eocene seems to have driven most of the group into extinction alongside all their other cimolestan relatives – but a few of the Asian species clung on slightly longer as the very last of their kind, with the last known fossils dating to about 28 million years ago in the early Oligocene.

Tsaidamotherium

Tsaidamotherium hedini was a ruminant ungulate living around 11 million years ago during the late Miocene, in the northeastern part of the Tibetan Plateau in what is now Northwestern China. Although it’s known only from partial skull remains it was probably similar in body size to a large sheep, about 80cm tall at the shoulder (2’7″).

Since its discovery in the 1930s it’s traditionally been classified as part of the muskox lineage, but in 2022 it was proposed to actually be a giraffoid very closely related to the newly-discovered Discokeryx.

Tsaidamotherium had some extremely unusual headgear, with highly asymmetrical “horns” (actually ossicones if was a giraffoid). The left one was small and positioned above the eye, while the right one was shifted back and towards the middle of the forehead, and was expanded out into a wide bony disk that would have supported a large helmet-like domed keratin covering.

Its skull also had a very large nasal cavity resembling that of the modern saiga antelope, suggesting it may have convergently evolved a similar sort of complex air-filtering snout to deal with dry cold air in its mountainous habitat.

Champsosaurus

Champsosaurus might look a lot like an unarmored crocodilian, but it was actually only very distantly related to them – this animal was part of a completely extinct reptile lineage known as choristoderes, and its very gharial-like appearance was the result of convergent evolution.

Found in freshwater habitats across North America and Europe, several different species of Champsosaurus are known from around the middle of the Late Cretaceous through to the end of the Paleocene, surviving through the devasting K-Pg mass extinction 66 million years ago.

Champsosaurus laramiensis here lived in western North America and ranged right across the time of the extinction event, dating to between about 70 and 62 million years ago. Around 1.5m long (~5′), it had a flattened skull that was very wide at the back, supporting powerful jaw muscles, with a long narrow toothy snout that could sweep rapidly through the water to snap at fish in a similar manner to modern gharials. Its nostrils were right at the tip of its snout, and it may have used it like a snorkel, only sticking the very end out of the water to breathe.

Skin impressions show it was covered in numerous tiny scales, most less than 0.5mm in size (0.01″), which wouldn’t have been particularly visible from a distance.

There also seems to have been some sexual dimorphism in this species, with females having much more well-developed limb bones – allowing them to occasionally haul themselves out onto the shore to lay eggs, while males were probably fully aquatic and unable to support themselves on land.

Falcatakely

Modern birds’ upper beaks are made up mostly from skull bones called the premaxilla, but the snouts of their earlier non-avian dinosaur ancestors were instead formed by large maxilla bones.

And Falcatakely forsterae here had a very unusual combination of these features.

Living in Madagascar during the Late Cretaceous, about 70-66 million years ago, it was around 40cm long (1’4″) and was part of a diverse lineage of Mesozoic birds known as enantiornitheans. These birds had claws on their wings and usually had toothy snouts instead of beaks, and many species also had ribbon-like display feathers on their tails instead of lift-generating fans.

Falcatakely had a long tall snout very similar in shape to a modern toucan, unlike any other known Mesozoic bird, with the surface texture of the bones indicating it was also covered by a keratinous beak. But despite this very “modern” face shape the bone arrangement was still much more similar to other enantiornitheans – there was a huge toothless maxilla making up the majority of the beak, with a small tooth-bearing premaxilla at the tip.

This suggests that there was more than one potential way for early birds to evolve modern-style beaks, and there may have been much more diversity in these animals’ facial structures than previously thought.