Weird Heads Month #08: Nose-Forks and Handlebar Heads

Modern ruminants are the only living mammals with bony headgear, with four different  lineages each sporting a slightly different type: deer antlers, bovid horns, giraffid ossicones, and the prongs of pronghorns.

We still don’t actually know much about the evolutionary origins of ruminant headgear, although a recent genetic study suggests they’re all derived from a single common ancestral structure (and that deer antlers started off as controlled bone cancer).

And some extinct species were even stranger.

The protoceratids were an early group of North American ruminants whose relationships are uncertain, but may have been related to modern chevrotains. They were convergently deer-like in appearance, with teeth adapted for grazing on tough grasses – and along with having a pair of horns in the usual position on their heads, males also sported an additional pair of ossicone-like growths on their noses.

Synthetoceras tricornatus lived during the Late Miocene, around 10-5 million years ago, and was one of the largest protoceratids, standing about 1.1m tall at the shoulder (3’7″). Its two nose-horns were partially fused into a single long structure with a forked tip, which may have been used for sparring in a similar manner to the antlers of modern deer.

A colored line drawing of an extinct deer-like animal. It has a pair of horns on its head, along with a long horn on its nose that has a two-pronged forked tip.
Synthetoceras tricornatus

Meanwhile on a different branch of the ruminant family tree, closer related to deer and giraffes, a group known as the palaeomerycids independently developed a similar sort of extra head appendage – but at the opposite end of their skulls.

These ruminants were a little more heavily built than the protoceratids, and specialized in feeding on soft vegetation in humid forest environments. They were a highly successful group, existing for almost 30 million years, ranging across Eurasia, Africa, and North America, and even ventured into South America during the early phases of the Great American Interchange.

Males had two giraffe-like ossicones above their eyes, along with a third crest-like one at the very back of their heads. In some species this formed a single central “horn” shape, while in others it forked out to each side. They also often had long saber-like canine teeth similar to modern water deer and musk deer, which were probably used for fighting while their elaborate headgear was purely for visual display.

Xenokeryx amidalae lived in Spain during the mid Miocene, about 16 million years ago. It stood around 0.8-1m tall at the shoulder (2’7″-3’3″) and had a unique T-shaped “handlebar” crest which ended up inspiring its genus name – a reference to the similar shape of one of Queen Amidala’s headpieces in Star Wars, which was itself based on Mongolian imperial fashion.

A colored line drawing of an extinct deer-like animal. It has fang-like tusks protruding from the sides of its mouth, a pair of giraffe-like ossicones above its eyes, and a T-shaped handlebar-like crast on the back of its head.
Xenokeryx amidalae

Weird Heads Month #05: Crested Snorkelers

Phytosaurs were a lineage of incredibly crocodile-like archosauriformes – essentially “crocodiles before crocodiles” – convergently evolving an incredibly similar appearance at a time when the ancestors of modern crocs were still small and terrestrial.

But while they had toothy snouts and bodies heavily armored with bony ostederms, unlike crocodilians their nostrils were far back on their heads up near their eyes, often in a sort of bony “snorkel” so they could breathe while almost fully submerged underwater.

Mystriosuchus westphali lived in Germany during the Late Triassic, about 215-212 million years ago. Around 4m long (~13′), it was even more aquatic than other phytosaurs, with paddle-like limbs and long slender gharial-like jaws adapted for catching slippery prey.

And along with the typical phytosaur snorkel, it also had raised crests along its upper jaw – which may have supported even larger keratinous display structures.

Lophialetes

Much like how hyraxes were once far more diverse than their modern representatives, some ancient members of the tapir lineage were similarly weird.

Lophialetes expeditus was one of these odd tapir-relatives, living in Mongolia and China during the mid-Eocene about 48-37 million years ago. Standing around 50cm tall at the shoulder (1’8″) it had a build more resembling a deer or a horse than its pig-like modern cousins, and it was adapted for fast running in open plains, with long slender legs and three-toed hoofed feet that bore most of its weight on the middle digit.

Its skull had a nasal region similar to both modern tapirs and saiga antelope, suggesting the presence of a short trunk-like nose – but since some of its closest relatives didn’t have nearly such well-developed snouts, it seems that Lophialetes evolved its trunk separately to modern tapirs.

Brindabellaspis

The placoderms are most famous for some of the biggest members of the group such as the giant blade-jawed Dunkleosteus. But these ancient armored fish were actually incredibly diverse in their time, occupying many different ecological niches and developing a wide range of body shapes.

Perhaps one of the most unusual was Brindabellaspis stensioi from the Early Devonian of New South Wales, Australia. Living around 405 million years ago in a tropical reef ecosystem, this early placoderm was quite small, only about 45cm long (1′6″), and it was recently revealed to have had an especially weird head.

Its skull was flattened with its eyes facing upwards on top, its nostrils came out of the corners of its eye sockets, and its jaws were positioned very far forward. It also had a long flat snout packed full of sensory nerves, sort of like the bill of the modern platypus but using a modified form of the pressure-sensing lateral line system instead of electroreception.

It was probably some sort of bottom-feeder, using its bill to feel around on the seafloor for small prey – and there may even have been a longer and wider soft tissue extension to its sensitive snout, giving it even more of a duck-like shape.

Eretmorhipis

Eretmorhipis carrolldongi, a hupehsuchian marine reptile from the Early Triassic of China (~247 mya).

This species was originally named back in 2015, but at the time the only known specimens were missing their heads. It was assumed that its skull would have looked similar to those of other hupehsuchians… but now new fossils have been found, and it seems to have actually been much much weirder!

Eretmorhipis’ head was surprisingly tiny in proportion to its body – sort of like a marine version of Cotylorhynchus – and its shape convergently resembled the modern platypus, with a wide “duck bill” and very small eyes. It may have hunted for food along the seafloor in a similar manner to the platypus, using either a highly sensitive sense of touch or possibly even electroreception to locate small invertebrates like worms and shrimp.

It also had much larger bony osteoderms than its other known hupehsuchian relatives, forming a distinctive protruding spiky ridge down its back. At about 85cm in length (2′9″) it was one of the largest marine animals around at the time, so this structure probably wasn’t needed for defense – but as with other hupehsuchians its actual function is still unknown.

Ocepechelon

Ocepechelon bouyai, a sea turtle from the late Cretaceous of Morocco (~70-66 mya). Closely related to the modern leatherback turtle and the pug-nosed Alienochelys, it’s only known from a single 70cm-long skull (2′4″) – and while its body proportions aren’t known for certain it was probably very big, possibly up to 4m long (13′).

Unlike any other known turtle it had a unique narrow tube-shaped snout. This is thought to be an adaptation for suction feeding, vacuuming up tiny fish, squid, and jellyfish in a similar manner to modern pipefish or beaked whales.

Xinpusaurus

Thalattosaurs were a weird and rather mysterious group of Triassic marine reptiles. It’s not clear where they actually fit on the reptile evolutionary tree (we know they’re diapsids, but nobody can really agree on anything more definite than that), and they had some very strange skulls that seem to have been highly specialized for something, although their actual function is still unknown.

Xinpusaurus kohi here is known from the Late Triassic of China (~232-221 mya). About 1.3m long (4′3″), with half of that being its paddle-like tail, it had an elongated upper jaw that formed a protruding pointed spear-shaped snout.

It’s not clear whether this odd snoot was an adaptation for hunting similar to the long bills of swordfish – there’s quite a bit of variation in length and shape between different individual specimens – or if it was serving some other purpose like the sexually dimorphic noses of some modern lizards.

Nicrosaurus

Nicrosaurus kapffi from the Late Triassic of Germany, about 221-205 million years ago. Although rather crocodile-like in appearance, this 4-6m long (13′-19′8″) animal was actually part of an extinct group called phytosaurs – long-snouted heavily-armored reptiles with their nostrils high up on their heads near their eyes.

Phytosaurs’ exact evolutionary relationships are still disputed, with opinions currently going back and forth between them being archosauriformes or an early branch of the croc lineage within the true archosaurs. But either way they weren’t directly ancestral to modern crocodilians, and instead developed a very similar body plan via convergent evolution.

While some phytosaurs had very slender gharial-like snouts and probably fed mostly on fish, others like Nicrosaurus had much more robust jaws and seem to have secondarily adapted to a terrestrial predator lifestyle. They had longer limbs and a more upright posture than their semi-aquatic relatives, and enlarged fangs at the hooked tips of their jaws that may have been used to deliver a powerful stabbing blow to their prey.

Nicrosaurus also had a raised bony crest running along its snout, which I’ve depicted here as supporting an even larger soft-tissue display structure.