Aureia

Aureia rerehua was a toothed whale that lived during the late Oligocene and early Miocene, around 23-22 million years ago, in shallow coastal waters covering most of what is now Aotearoa New Zealand.

It was closely related to the waipatiids – a group traditionally classified as platanistoids (the South Asian river dolphin lineage), but more recently proposed as instead representing a separate earlier branch of the toothed whale evolutionary tree.

About 2m long (~6’6″), Aureia had distinctive tusk-like teeth that splayed outwards from its snout, interlocking when its mouth was closed. Along with a flexible neck and its fairly delicately-built skull and jaws, this suggests it was specialized for catching small prey in a “fish trap” of teeth, a unique feeding strategy for a toothed whale.

Along with different feeding specializations in other close relatives like Nihohae, Aureia shows us how multiple species of these ancient Aotearoan cetaceans were able to coexist in the same place and time by diversifying into different novel ecological niches.

Continue reading “Aureia”

Ninoziphius

Ninoziphius platyrostris was an early beaked whale that lived during the late Miocene (~6 million years ago) in warm coastal waters covering what is now southwestern Peru. Its ancestors appear to have branched off from all other beaked whales very early in the group’s history, indicating a “ghost lineage” going back to at least 17 million years ago.

About 4.4m long (~14’5″), it was less specialized for suction feeding and deep diving than modern beaked whales. Also unlike most modern species its jaws were lined with numerous interlocking teeth, with heavy wear suggesting it may have hunted close to the seafloor, where disturbed sand and grit would have regularly ended up in its mouth along with its prey and steadily ground down its teeth during its lifetime.

Males had a pair of stout tusks at the tip of their upward-curving lower jaw, with possibly a second smaller set of tusks behind them, which were probably used for fighting each other like in modern beaked whales.

Its shallow water habitat and more abrasive diet suggest Ninoziphius’ lifestyle was much more like modern dolphins than modern beaked whales, and other early beaked whales like Messapicetus similarly seem to have occupied dolphin-like ecological niches.

These dolphin-like forms disappeared around the same time that true dolphins began to diversify, possibly struggling to compete for the same food sources, while other beaked whales that had begun to specialize for deep sea diving survived and thrived. Interestingly this ecological shift seems to have happened twice, in two separate beaked whale lineages – although only one of them still survives today – with bizarre bony “internal antlers” even independently evolving in both groups.

Continue reading “Ninoziphius”

Cadurcodon

Cadurcodon ardynensis was an odd-toed ungulate that lived in what is now Mongolia during the late Eocene, about 37-34 million years ago.

It was around 2m long (6’6″) and, despite its very tapir-like appearance and lack of horns, it was actually closer related to modern rhinoceroses – it was part of a group of early rhino-cousins known as amynodontids, which convergently evolved both hippo-like and tapir-like lifestyles.

Cadurcodon was the most tapir-like of the tapir-like amynodontids, with a short deep skull and retracted nasal bones that indicate it had a well-developed prehensile trunk. Males also had large tusks formed from their upper and lower canine teeth, which may have been used for fighting each other.

Continue reading “Cadurcodon”

Eurotamandua

Eurotamandua joresi lived during the mid-Eocene, about 47 million years ago, in the lush subtropical forests that covered what is now central Germany.

When it was first described in the early 1980s it was classified as an anteater due to its close resemblance to some modern species… but there were big problems with this interpretation. Anteaters have a sparse fossil record, but they’re known to have originated during the early Eocene in the isolated island continent of South America – so Eurotamandua’s ancestors making it all the way to Europe within just a few million years would be pretty remarkable!

Also, on closer inspection it didn’t have the distinctive skeletal features of a xenarthran mammal, suggesting it wasn’t an anteater after all.

Instead more recent studies have identified it as a close relative of pangolins, part of an early branch of the group that didn’t have the characteristic large scales.

About 90cm long (~3′), Eurotamandua would have a lifestyle much like the anteaters it convergently resembled, using its large claws to rip open ant nests and a long sticky tongue to feed.

Patagomaia

Although most Mesozoic mammals were rather small, a few different lineages produced some pretty hefty-sized forms – most notably the metatherian Didelphodon, the gondwantherians Adalatherium and Vintana, and the eutriconodont Repenomamus.

And now we’ve got another one to add to that list.

Patagomaia chainko lived towards the end of the Cretaceous, about 70 million years ago, in what is now Patagonia near the southern tip of South America. Known from some partial leg and hip bones, it was potentially the largest known Mesozoic mammal yet discovered – estimated to have been similar in size to a modern bobcat, roughly 50cm tall at the shoulder (~1’8″) and weighing around 14kg (~31lbs).

Distinctive anatomical features of the bones indicate it was an early therian mammal, the group that contains both modern marsupials and placentals, but it can’t currently be classified any more specifically than that. Mesozoic therian fossils are very rare in the southern continents, so Patagomaia‘s presence in late Cretaceous South America adds to their known range and diversity, as well as providing an example of surprisingly large body size for the time.

Without more material it’s impossible to tell what Patagomaia‘s ecology was. I’ve gone for a fairly generic life appearance here, and while what’s known of its joints and muscle attachments doesn’t indicate climbing specializations, plenty of unexpected tetrapods still like to get up on tree branches.

Phosphatherium

Phosphatherium escuillei was one of the very earliest known members of the proboscideans, a lineage today represented only by the three living species of elephants.

Living in what is now Morocco during the late Paleocene and early Eocene, around 56 million years ago, it would have been about the size of a cat, roughly 30cm at the shoulder (~1′) and 60cm long (~2′). It had a fairly low flat head with a proportionally short snout, while the back end of its skull behind it eyes was elongated, supporting large powerful jaw muscles.

Wear patterns on its teeth suggest it ate a lot of tough vegetation, and it may have been a semiaquatic animal behaving somewhat like modern tapirs or pygmy hippos – spending a lot of the daytime lounging in water, and emerging onto land to forage during the night.

Spectember/Spectober 2023 #10: Tree Goat

An anonymous submitter asked for an “arboreal goat with grasping sloth-like claws”:

A shaded sketch of a speculative tree-climbing descendant of goats. It's a hairy sloth-like animal, clinging to a tree trunk with long chunky limbs that end in large hooked claw-like hooves. Its head is proportionally small, with fleshy giraffe-like lips, forward-facing eyes, and small stubby horns.

Cluraix cephalula is a distant descendant of feral goats in a tropical forest environment, representing a small tree-climbing offshoot of a specialized chalicothere-like lineage.

About 70cm long (~2’4″), it clambers around in the high tree canopies, with its forward-facing eyes providing good depth perception in this complex three-dimensional habitat. Its long hooked claw-hooves are used both to cling onto branches and to hook-and-pull clumps of foliage towards itself, stripping the leaves with its flexible fleshy lips.

Spectember/Spectober 2023 #09: Things With Wings

(Apologies for the abrupt absence – I’m okay, just having everything break down at once. This is fine.)

So— back to the speculative evolution request list!

TheBigDeepCheatsy requested a “cactus-dwelling/germinating evolution of introduced rosy-faced lovebirds”:

A shaded sketch of a speculative symbiotic relationship between lovebirds and saguaro cactus. The lovebird is shown on the left, a small parrot that looks very similar to modern rosy-faced lovebird except with hints of a more mottled color pattern. The cactus is shown on the right, a large fasciated saguaro with its top fanning out into a wide "crown", with several nest holes dug into it and multiple lovebirds occupying them.

While Agapornis cheatsyi is still quite physically similar to its introduced ancestors, this lovebird has developed a close symbiotic relationship with the cactus Carnegiea ornipolis, a descendant of the modern saguaro.

Naturally fasciated, this cactus grows a splaying fan-like crown which the lovebirds excavate their shallow nest burrows into. Feeding on the cactus’ fruit in early summer, the lovebirds then disperse the seeds via their droppings – a process that significantly improves propagation chances, both due to the birds commonly foraging and defecating around suitable nurse plants and the passage through their gut speeding up germination.


Someone calling themself “LB” asked for some “flying afrotherians”:

A shaded sketch of a speculative flying tenrec. It's a bat-like animal with membranous wings supported by three elongated fingers, and a large shrew-like head with long toothy jaws and an elephant-shrew-like nose.

Elbeitandraka venenifer is a descendant of tree-climbing Malagasy tenrecs that developed gliding membranes – and its lineage is now just about achieving true powered flight.

About 25cm long (~10″), its proportionally short broad wings require it to fly very fast to generate enough lift for its weight. It mostly only actively flies when traveling between roosts and feeding sites (or when escaping from threats), alternating between gliding to save energy and flapping to recover altitude.

It’s an opportunistic omnivore, crawling around in the tree canopy foraging for vegetation, fruits, fungi, invertebrates, and the occasional smaller vertebrate, using its flexible sengi-like nose to probe around in crevices.

Much like modern common tenrecs it’s capable of hibernating for months at a time through periods of scarce food availability. It also accumulates alkaloid toxins in its body from its arthropod prey, advertising its unpalatability to predators with bold contrasting warning coloration on its wing membranes.


And here’s a combination of a couple of anonymous requests for both “flying heterodontosaurs” and “dragons with hind leg wings, a la sharovipteryx”:

A shaded sketch of a speculative flying predatory heterodontosaurid dinosaur, show both on the ground in a quadrupedal posture and in flight. Its hind legs form its main wings, with elongated outer toes supporting large pterosaur-like flight membranes. It also has a hooked beak at the front of fanged jaws, an s-curved neck, a compact fuzzy body, short forelimbs with taloned hands and small stabilization membranes, and a long vaned tail.

Inversodraco rapax is a highly specialized Jurassic descendant of heterodontosaurids that took to climbing and gliding, developing delta-wing-like membranes on their hindlimbs convergently similar to those of the earlier sharovipterygids.

Around 75cm long (~2’6″), it has unusually flexible hip joints for a dinosaur, able to splay its legs out to the sides to deploy wings supported by an elongated outer toe on each foot. Its arms form small forewings for stability, and its long tail ends in a vane of stiffened feathers that aid in steering.

Unlike its herbivorous-to-omnivorous ancestors it’s primarily a carnivore, swooping down onto small prey and grabbing it with its talon-like forelimbs.

Spectember/Spectober 2023 #08: Various Filter-Feeders

Admantus asked for a “freshwater baleen whale”:

A shaded sketch of a speculative freshwater baleen whale. It has a very wide duck-like snout with whisker-like bristles, short baleen inside its mouth, very small reduced eyes, and broad paddle-like flippers.

Rostrorutellum admantusi is descended from small cetotheres that became isolated in a large inland body of water (similar to the modern Caspian Sea), eventually becoming landlocked and gradually reducing in salinity towards fully freshwater.

Highly dwarfed in size, just 2-3m long (~6’6″-9’10”), they’re slow swimmers with broad duck-like snouts that are used to scoop up mouthfuls of sediment and strain out their invertebrate prey in a similar feeding style to gray whales.

Due to the murkiness of the water, and the lack of large predators in their environment, they have poor eyesight and instead use sensory bristles and electroreceptors around their snouts to navigate and detect prey.


And an anonymous submission requested a “whale-like filter-feeding marine crocodile”:

A shaded sketch of a speculative filter-feeding crocodile. It has spatula-like jaws lined with many delicate closely-spaced needle-like teeth, flipper-like limbs, and a long paddle-like tail.

Sestrosuchus aigialus is a 6m long (~20′) crocodilian closely related to the modern American crocodile, living in warm shallow coastal waters.

It’s adapted for an almost fully aquatic lifestyle convergently similar to the ancient thalattosuchians, swimming with undulations of its long tail and steering with flipper-like limbs. But unlike other crocs it’s specialized for filter-feeding, with numerous delicate needle-like teeth in its jaws that interlock to sieve out small fish and planktonic invertebrates from the water.


A couple more suggestions also asked for “fully aquatic pinnipeds” and “future crabeater seal evolution”:

A shaded sketch of a speculative filter-feeding fully aquatic crabeater seal. It has four wing-like flippers, a streamlined body, and elongated jaws with many lobed teeth used to sieve krill.

Euphausiolethrus volucer is a fully aquatic descendant of the crabeater seal. About 5m long (~16’4″), it occupies the ecological niche of a small baleen whale in the krill-abundant Antarctic waters that lack most actual baleen whales.

Its jaws contain numerous finely-lobed teeth that are used to strain krill from the water, and it utilizes all four of its wing-like flippers to swim in an “underwater flight” motion similar to that of plesiosaurs.

Highly social, it tends to congregate in pods that cooperate to herd swarms of krill for easier feeding.

Spectember 2023 #05: Shiny Mammal

Someone who identified themself only as “Hanna” requested a “mammal that’s shiny and iridescent like some insects and spiders”:

A shaded sketch of a speculative semiaquatic hairy armadillo. It has a wide armor carapace with a green-blue-purple iridescent sheen, a pig-like snout, wide paddle-like hands and feet, and a short tail.

Lustrophractus hannae is a relative of modern hairy armadillos that has adapted for a semiaquatic lifestyle.

About 40cm long (~16″), its unusually shiny carapace originally evolved thanks to its ancestors’ burrowing habits. Much like golden moles and some snakes, these armadillos’ scutes and hairs developed microridges that reduced friction and repelled dirt particles, with the side effect of becoming strikingly iridescent – and, conveniently, also rather water repellent, enabling Lustrophractus’ lineage to take up aquatic omnivorous foraging habits.

The iridescence also serves a defensive function, using a bright flash of color to startle and confuse predators.