Nesonektris

Nesonektris aldridgei here was one of the bizarre vetulicolians, a group of Cambrian animals that lived between about 520 and 505 million years ago.

Known from the Emu Bay Shale fossil deposits in Kangaroo Island, South Australia (~514 million years ago), Nesonektris was one of the larger known vetulicolians, growing to at least 17cm long (~6.5″). Like most of its relatives it had a large streamlined forebody with a mouth opening at the front, and no obvious appendages or sensory structures. A groove down each side may have housed gill openings, and a segmented flexible tail provided propulsion for swimming.

Very little is known about the ecology of these animals. They were clearly adapted for active swimming in the water column, and may have filter-fed on plankton – but some other vetulicolians have been found preserved with their guts full of seafloor sediment, suggesting some sort of detritivorous lifestyle instead.

Their evolutionary relationships are also still uncertain, but preservation of what appears to be a notochord in Nesonektris suggests that vetulicolians may have been part of the chordate lineage, possibly close relatives of tunicates.

Hyrachyus

What’s the most unexpected fossil you’d think could be found on the island of Jamaica?

How about an ancient rhino?

Hyrachyus here was an early member of the rhinocerotoids, a lineage of odd-toed ungulates that also includes the true rhinoceroses, the tapir-like and hippo-like amynodontids, the long-legged hyracodontids, and the giant indricotheriines.

This particular genus was very widespread for much of the Eocene, found across Europe, Asia, and North America, crossing back and forth between the continents via the North Atlantic land bridge.

The Jamaican Hyrachyus lived during the mid-Eocene, around 45 million years ago, and was very anatomically similar to the North American Hyrachyus affinis – with the known fossil material not being considered distinct enough to be assigned to a new species yet. It was also about 15-20% smaller than its mainland relative, standing only 25cm tall at the shoulder (10″), but it’s not yet clear if this was a case of insular dwarfism or not.

Its presence in ancient Jamaica suggests that there may have been some sort of land connection between the proto-island and Central America during the early Eocene, when a chunk of what would eventually become western Jamaica was located much closer to the coasts of Honduras and Nicaragua. It’s the only fossil ungulate known from the Caribbean, and one of only a few terrestrial mammals in the region with North American evolutionary roots (the others being the extinct rodents Caribeomys merzeraudi and Oryzomys antillarum, and modern solenodons).

Unfortunately these little rhinos didn’t get much time on their island home. Jamaica subsided fully underwater about 40 million years ago, drowning its unique Eocene ecosystem entirely, and wouldn’t re-emerge and be re-colonized until much later in the Cenozoic.

Seeleyosaurus

Seeleyosaurus guilelmiimperatoris here was a smallish plesiosaur (about 3.5m long / 11’6″) found in Germany during the early Jurassic, about 182 million years ago.

And back in the 1890s, a specimen of this species was discovered with soft tissue impressions showing a diamond-shaped tail fin.

But despite us knowing about plesiosaur tail flukes for such a long time, they’re surprisingly under-represented in reconstructions, never seeming to have become associated with the popular image of these animals in the same way that early pterosaur’s tail vanes did. It doesn’t help that no other direct impressions of plesiosaur tail fins have ever been found, or that the Seeleyosaurus specimen’s soft tissue got painted over at some point in the mid-1900s, making it incredibly difficult to study without causing further damage. 

(Perhaps modern non-invasive scanning techniques could be able to see under the paintjob, but as far as I’m aware nobody’s tried that yet.)

These tail fins are usually assumed to have been vertically oriented like those of other aquatic reptiles, moving side-to-side and acting like a rudder. However, there’s also a hypothesis that their fins might have actually been horizontal more like those of modern cetaceans and sirenians, based on several anatomical quirks – such as their tail regions being very wide and flat at the base, and the vertebrae at the tip being unusually pygostyle-like, very different from the way the tail bones of vertically-finned reptiles look.

Silesaurus

Silesaurus opolensis here was a type of dinosauriform – a reptile very closely related to the ancestors of true dinosaurs, but not quite actually a dinosaur itself.

Living in Poland during the Late Triassic (~230 million years ago), it was a quadrupedal animal roughly the size of a large modern dog, about 50cm tall at the shoulder (1’8″) and 2m long (6’6″). The front of its lower jaw was toothless and covered with a keratinous beak, and there may have been a corresponding much smaller beak at the very tip of its upper jaw, too.

It was originally thought to be a herbivore, but coprolites full of insect remains suggest it was probably more of an omnivore, possibly foraging by pecking in a convergently similar manner to its distant bird cousins.

In fact, one of those pieces of Silesaurus poop was recently found to preserve a new species of tiny beetle in incredible detail.

Eons Roundup 11

It’s time for another batch of PBS Eons commission work!

The marine reptiles Atopodentatus and Henodus, from “The Triassic Reptile With ‘Two Faces'”
https://www.youtube.com/watch?v=-8W26SiCylI


The marine turtles Archelon and Euclastes, from “The Return of Giant Skin-Shell Sea Turtles”
https://www.youtube.com/watch?v=Tmb8XCwb3FI

Austrolimulus

Horseshoe crabs are famous examples of “living fossils“, having changed their external appearance very little over hundreds of millions of years. But some fossil species were much more varied in shape than their morphologically conservative modern relatives, such as Austrolimulus fletcheri here.

Living in freshwater environments in what is now New South Wales, Australia, during the Middle Triassic (~247-242 million years ago), Austrolimulus had incredibly long spines on each side of its head, reaching a span of around 18cm (7″) – wider than its total body length!

The function of these spines is unclear, but they may have acted like a hydrofoil in fast-moving currents, or they may have served a defensive purpose by making Austrolimulus‘ carapace too wide and unwieldy for some predators to deal with.

Heliosus

Just before the 2017 solar eclipse, some unusual fossils were discovered in Southern Wyoming, USA.

Consisting of a partial jawbone and a humerus, and dating to the mid-Eocene (~47 million years ago), the remains clearly belonged to an early even-toed ungulate – but one much bigger than the rabbit-sized herbivores known from that time. This was something closer in size and build to a large modern pig, standing at least 1m tall at the shoulder (3’3″).

It turned out to belong to a member of a somewhat obscure lineage known as the helohyids, a group whose evolutionary relationships are a bit uncertain but are generally considered to be part of the whale-and-hippo lineage. These pig-like animals were large opportunistic omnivores, possibly occupying a similar ecological role to the later entelodonts, with some Late Eocene forms reaching sizes comparable to black bears.

This new helohyid was named Heliosus apophis, inspired by the eclipse, with its genus name meaning “sun pig”, and its species name referencing a sun-devouring Ancient Egyptian deity.

It was one of the earliest known large-bodied members of the group, and shows that these animals must have increased in size very rapidly during their early evolution, going from rabbit-sized to pig-sized within just a couple of million years.

Pleurosaurus

The modern tuatara is the only living representative of an entire major lineage of reptiles known as sphenodontians – an evolutionary “cousin” group to all lizards and snakes, last sharing a common ancestor with them over 240 million years ago.

And during the Triassic and Jurassic these lizard-like animals were a widespread and diverse bunch, found worldwide and occupying many of the ecological roles that were later taken over by true lizards. They ranged from tiny insectivores to omnivores, relatively large herbivores, and specialized shell-crushers – and some even adapted to a fully aquatic fish-eating lifestyle.

Pleurosaurus ginsburgi here lived during the Late Jurassic, about 150-145 million years ago, in the warm shallow seas and lagoons that covered most of Europe at that time. Fossils of this particular species are known from southern France, with the closely related Pleurosaurus goldfussi found in both the same region and the German Solnhofen Limestone.

These swimming sphenodontians could grow to around 1.5 in length (~5′), with elongated bodies, pointed triangular snouts with retracted nostrils, short flipper-like forelimbs, and especially long eel-like tails. Soft tissue impressions also show scaly skin covering their bodies and a “frill” running along the top of the tail.

Stenaulorhynchus

Taking place during the 50-million year span between two huge mass extinctions, the Triassic was a very weird time. At the start of the period there was world domination by the synapsid Lystrosaurus, then after a few million years of recovery time came an evolutionary “explosion” from the rest of the survivors – filling new roles in their ecosystems and producing a brief but bizarre menagerie of unique species.

And one of the groups that rose to prominence during this time were the rhynchosaurs. Part of the archosauromorph branch of reptiles, they were closely related to the ancestors of crocodilians, pterosaurs, and dinosaurs, and evolved from small superficially lizard-like forms living in southern Africa during the very start of the Triassic, around 250 million years ago. But within just a few million years they became larger and bulkier, specialized for herbivory and scratch digging, and they soon spread all over Pangaea and became incredibly abundant in some fossil deposits.

Stenaulorhynchus stockleyi was one of larger member of this lineage, around 1.2m long (4’), known from Tanzania about 247-242 million years ago. It had a typical triangular rhynchosaurian skull, with wide deep cheeks supporting powerful jaw muscles and multiple rows of grinding teeth, along with a narrow hooked “beak” formed from the premaxillary bones of its snout.

Its unclear what the actual life appearance of the rhynchosaur “beak” was, with some reconstructions having a shrinkwrapped “alien mole-rat” look, others giving them keratinous parrot-like actual beaks, and still others going with fleshy tuatara-like lizard lips. In the past I’ve leaned somewhat towards the latter, but since one fossil does actually show some evidence for a keratinous covering I’ve gone for an extensive full beak this time around.

Squaloraja

Discovered in the late 1820s by pioneering paleontologist Mary Anning, the odd-looking fossil of the cartilaginous fish Squaloraja polyspondyla seemed to have characteristics of both sharks and rays.

It was initially thought to be a “missing link” transitional form between those two groups, but later it was identified as being something else entirely – it was actually part of the chimaera lineage, much closer related to modern ratfish, and its ray-like features were due to convergent evolution for a bottom-feeding lifestyle.

Living during the early Jurassic period, about 200-195 million years ago, Squaloraja fossils are now known from the south coast of England, southern Belguim, and northern Italy. Around 30cm long (1’), this weird fish had a massive wide flat snout that looked like an even more extreme version of the long noses seen in some of its modern relatives, and this enormous snoot would have been absolutely packed with sensory receptors to help it locate small aquatic prey hidden in the muddy seafloor.

Some specimens also have a distinctive long horn-like spine on their foreheads, and since these individuals also have claspers it seems like this was a sexually dimorphic feature. Much like the smaller head claspers on modern chimaeras, male Squaloraja probably used this “horn” to hang onto females’ pectoral fins during mating – and with it being such a large elaborate structure it may also have been used for visual display purposes, too.