Strange Symmetries #04: Even More Echinoderms

Early echinoderms seem to have gone through an asymmetrical phase before starting to evolving their characteristic radial symmetry. The first truly radial forms had three-way symmetry, but soon a group called the edrioasteroids upped that count to five.

First appearing in the fossil record around 525 million years ago in the early Cambrian, edrioasteroids were mostly shaped like discs or domes, and were immobile filter-feeders that lived permanently attached onto surfaces like the seafloor or the shells of other animals. Unlike most modern echinoderms their pentaradial symmetry was actually created by taking a tri-radial body plan and forking two of their arms near the bases to create a total of five.

A colored line drawing of Thresherodiscus, an extinct early echinoderm. It's a domed disc-shaped creature that looks like it has a starfish merged onto its upper surface – but the "arms" branch many more times than five, and not totally symmetrically, creating an erratic forking pattern. It's depicted with a dark purplish body and brighter orange arms.
Thresherodiscus ramosus

Thresherodiscus ramosus was an unusal edrioasteroid that lived in the shallow seas of what is now central Canada during the late Ordovician, around 460-450 million years ago. Up to about 4cm in diameter (~1.6″), its arms split additional times at irregular intervals, creating a complex asymmetrical branching pattern across its upper surface.

The tips of its arms protruded slightly over the rim of its body, and along with the erratic extra branching this may have been an adaptation to increase its food-gathering surface area.


Another group of early pentaradial echinoderms known as the blastozoans were characterized by erect feeding appendages called brachioles. But some blastozoans abandoned their five-way symmetry in favor of much stranger arrangements, sometimes having as few as two arms – and, in some cases, two mouths.

A colored line drawing of Amygdalocystites, an extinct early echinoderm. It has an oval body with a curving stem coming out from its right side, with the stem ending in a circular holdfast. Two "food grooves" run along its top edge, roughly in line with each other on each side of where its not-visible mouth is located. Each food groove has a single row of long tendril-like feeding appendages growing from its left edge. It's depicted with a red and yellow color scheme, with a striped stem and irregular stripes on its body giving a sort of flame-like pattern, and purple tips on its feeding appendages.
Amygdalocystites radiatus

Known from the same general area and time period as Thresherodiscus, Amygdalocystites radiatus was part of an Ordovician-to-early-Silurian lineage known as paracrinoids, which attached their irregularly-shaped bodies to the seafloor via a stem.

About 5cm long (~2″) Amygdalocystites had just two asymmetric arms forming “food grooves” along its upper edge, each lined with numerous long brachioles along just one of their sides. It probably orientated itself so its body was facing down-current, which would have created eddies that brought suspended food particles within easier reach of its brachioles.

Strange Symmetries #03: Eerie Early Echinoderms

Represented today by starfish, brittle stars, sea urchins, sea cucumbers, and crinoids, the echinoderms have a characteristic five-way radial symmetry that makes them barely even recognizable as bilaterians. Their true ancestry is only revealed by their genetics and their larvae, which still retain bilateral symmetry – and the way they metamorphose into adults is bizarre, essentially growing a whole new radial body from within the left side of their larval body.

(Sea cucumbers and sand dollars are superficially bilateral as adults, but evolved this secondarily on top of their existing radial symmetry. And some adult echinoderms like starfish also seem to retain a little bit of “behavioral bilaterism”, generally preferring to move with a specific arm always acting as their “front” end.)

The first known echinoderms appeared in the fossil record during the early Cambrian, about 525 million years ago, but the common ancestor of the whole group probably actually originated a few tens of millions of years earlier in the mid-to-late Ediacaran. Early echinoderms seem to have started off as flattened animals that sat on the seafloor filter-feeding, and with this largely immobile way of life their bodies started to shift into asymmetry, no longer constrained by the locomotory advantages of being bilaterally symmetric.

In fact, for these early sedentary filter-feeders being radial was actually much more advantageous, able to distribute sense organs all around their bodies and grab food from any direction without having to reposition themselves, converging on the lifestyle of non-bilaterian cnidarian polyps. The evolutionary transition from bilateral to asymmetrical to pentaradial seems to have happened incredibly quickly during the Cambrian Explosion, and all modern echinoderms probably evolved from a group called the edrioasteroids, maintaining their new base body plan even when they later began taking up more mobile lifestyles again.

But during the process of all that some very alien-looking lineages split off at various stages of anatomical weirdness.

Stylophorans had asymmetrical bodies with a single feeding arm at the front, and varied from irregular boot-like shapes to almost bilateral heart shapes depending on their specific ecologies. The highly asymmetrical forms were probably spreading their weight out over soft soupy mud in quiet waters, while the more bilateral forms may have been more streamlined to deal with stronger water currents.

A colored line drawing of Sokkaejaecystis, an extinct early echinoderm. It has a body shaped roughly like a flattened boot, with spikes and flanges growing from around its margin. What looks like a long tail-like appendage growing from the sole of the boot shape is actually a starfish-like feeding arm at the animals' "front" end. It's depicted with orange-brown coloration with brighter yellow on the spikes and flanges, and darker brown irregular stripes over its body.
Sokkaejaecystis serrata

Sokkaejaecystis serrata was a stylophoran that lived during the late Cambrian, about 501-488 million years ago, in what is now South Korea. It was tiny, only about 1cm long (~0.4″), and its boot-shaped body was surrounded by spines and flanges that spread out its surface area and probably also made it much more awkward for small predators to attempt to eat.


Meanwhile the solutes started off as immobile animals living attached to the seafloor via a stalk-like appendage. But fairly early in their evolution they switched to a more active mode of life, modifying their stems into tail-like “steles” that were used to push themselves along.

A colored line drawing of Maennilia, an extinct early echinoderm. It has a flattened body shaped like a lumpy trapezoid, with a single short starfish-like arm growing from its left side and a long thin segmented tail-like appendage growing from the right side of its back end. It's depicted with mottled red and yellow coloration like a camouflage pattern.
Maennilia estonica

Maennilia estonica lived in what is now Estonia during the late Ordovician, about 450 million years ago. It was quite large for a solute at about 12cm long (~4.7″), with a sort of vaguely-trapezoidal body, a short feeding arm, and a long thin stele.

Both of these strange early echinoderm lineages were surprisingly successful, surviving for a good chunk of the Paleozoic Era alongside their more familiar radial relatives. The solutes lasted until the early Devonian about 400 million years ago, and the stylophorans continued all the way into the late Carboniferous about 310 million years ago.

Strange Symmetries #02: Oh Worm

Living during the Cambrian Period about 518 million years ago, Wufengella bengtsonii was discovered in the Chinese Chengjiang fossil deposits and was recently named and described in late 2022.

It was a small worm-like animal about 1.6cm long (~0.6″), with bundles of long bristles along its sides and flap-like structures on its underside. Its back was also covered with sclerite armor arranged in a strangely asymmetrical fashion, with larger overlapping plates in the middle and numerous smaller cap-like sclerites distributed unevenly along each side.

Although its bristles and appendages resemble those of annelid worms, the distinctive structure of the sclerites identifies Wufengella as being a member of the tommotiids – early relatives of modern lophophorates (bryozoans, brachiopods, and horseshoe worms). 

Its discovery actually confirms an old prediction that lophophorates probably originated from armored worm-like animals, representing an evolutionary link between earlier free-living annelid-like forms and later immobile filter-feeding tommotiids.

It’s not known why the armor on Wufengella‘s back was so unevenly organized – but some of the later tube-like tommotiids also had weird symmetry going on, with forms like Eccentrotheca having irregular sclerites arranged in a spiral around their bodies.

Strange Symmetries #01

Most animals are bilaterally symmetric, having body plans with mirrored left and right sides – which also allows them to have a defined head end, rear end, top side, and underside.

It’s not entirely clear what evolutionary advantage this type of symmetry gave to the first bilaterians, which would have been been small “simple” worm-like animals living sometime during the Ediacaran Period between 600 and 560 million years ago. The current generally accepted explanation is that it probably allowed for better active locomotion – clustering sense organs at the head end and directing body movement more efficiently towards food sources and away from threats.

However, this sort of symmetry is never completely perfect. Internal structures like organs are often arranged nonsymmetrically, and the realities of genetics, physical development, and environmental influences always result in external small deviations.

…But not every bilaterian has stayed roughly symmetrical.

Over the last half-billion years or so some bilaterians have abandoned their roughly-mirror-image body plans in favor of something distinctly wonkier. Asymmetry has evolved multiple times in various different lineages, and so every weekday this month we’ll be looking at some examples.

And we might as well start way back near the beginning:


Strange Symmetries #01: Almost Bilateral

Living in the Ediacaran between about 567 and 550 million years ago, the proarticulatans were flattened rounded organisms with two rows of soft “quilted” rib-like segments (known as isomers) and sometimes a larger fused “head” section at the front. The left and right isomers weren’t perfectly mirrored, instead being offset from each other in a glide reflection pattern – but the presence of a clear central body axis suggests these animals may have had some sort of relation to the earliest bilaterians, possibly even being a very early stem group that was experimenting with a not-quite-totally-bilateral body plan.

A colored line art drawing of Vendia, an extinct enigmatic Precambrian animal. It's shaped like a flattened oval and vaguely resembles an eyeless limbless gummy trilobite, with several rib-like segments on each side of its midline. The segments alternate instead of lining up symmetrically, and the larger front pair are fused into a head-like structure.
Vendia sokolovi

Discovered in what is now northwest Russia, and dating to around 555 million years ago, Vendia sokolovi was a small proarticulatan measuring about 1.1cm long (0.4″). It had a rather small number of isomers compared to some of its relatives, only 7 per side, and seems to have had a simple digestive tract that branched into each isomer.

(The superficial resemblance to trilobites was coincidental – while we might not be entirely sure what these things were, we do at least know they weren’t closely related to early arthropods.)

Very little overall is known about these animals’ lifestyles. Trace fossils suggest they were able to move around, feeding on microbial mats on the seafloor, and they may also have been able to firmly stick themselves onto the spots they were currently grazing.

It Came From The Trash Heap (We Don’t Talk About Kholumolumo)

A wastebasket taxon is what happens when species can’t be easily classified and instead get hurled into a “catch-all” category.

…But that’s not the only kind of taxonomic tangle that can befall a new discovery.

When a scientific name is assigned to a new species, but it isn’t given a corresponding formal description and type specimen, it becomes a nomen nudum – a “naked name”. Without a proper description and assigned holotype the name isn’t valid, and the new species isn’t technically accepted by the wider scientific community.

This has even happened to some surprisingly famous names. In the 1920s Velociraptor mongoliensis was briefly given the nomen nudum “Ovoraptor djadochtari” before getting its much more familiar name when it was officially described. Meanwhile the giant pterosaur Quetzalcoatlus northropi was stuck as a nomen nudum for decades, only finally getting a proper published description in 2021.

And there’s another particular long-standing nomen nudum that became mildly infamous – “Thotobolosaurus”, the “trash heap lizard”.

An illustration of Kholumolumo (previously known as "Thotobolosaurus"), an extinct prosauropod dinosaur. It's a bipedal dinosaur with a small head, long neck, chunky arms, thick bird-like legs, and a long counterbalacing tail. It's colored dark blue, with lighter striping on its underside and a speckled red-and-orange pattern along its back. Its face is brighter teal-blue with a mask-like streak of orange than continues down onto a fleshy throat dewlap. There are also reddish quill-like filaments on the back of its neck and in a tuft at the tip of its tail.
Kholumolumo ellenbergerorum

Discovered next to a literal trash pile in the village of Maphutseng in Lesotho, a few scattered and broken bones of this “prosauropod” sauropodomorph dinosaur were first found in 1930. But it wasn’t until the mid-1950s that a more extensive bonebed began to be unearthed at the site, and over the next decade over 1000 fossil fragments were collected.

In the mid-1960s the remains were initially classified as belonging to Euskelosaurus browni (which is now considered to be a wastebasket taxon), but just a few years later in 1970 the “Maphutseng Beast” was re-evaluated as a species new to science. It was referred to as “Thotobolosaurus mabeatae” – based on the local name of the discovery site, “Thotobolo ea ‘Ma-Beata” (trash heap of Beata’s mother) – but this name was never actually formally published.

Despite “Thotobolosaurus” being an undescribed nomen nudum it nonetheless went on to be repeatedly referenced in scientific literature over the next few decades, and appeared in several popular dinosaur books (even as recently as 2020!).

In the mid-1990s it was alternatively named “Kholumolumosaurus ellenbergerorum” in a Ph.D. dissertation, with this name derived from the kholumolumo, a reptilian creature in Sotho mythology, and the Ellenberger brothers who worked on the site. But this also didn’t count as a formal publication and instead became a second nomen nudum for the species.

Eventually, 90 years after the first bones were found and 50 years after the debut of the name “Thotobolosaurus”, this long-neglected sauropodomorph was finally given a proper published full anatomical description in 2020.

And it also got a third name, this time officially valid, based on the second one from the 1990s: Kholumolumo ellenbergerorum.

For something associated with trash for so long, Kholumolumo is actually now one of the most completely-known prosauropods. At least five different individuals were present in the collected fossil material, possibly as many as ten, and between them most of the full skeleton is represented – with the exception of the skulls, which are only known from a couple of small fragments.

We now know Kholumolumo was rather heavily-built, with chunky limb bones and unusually short shinbones. It would have been one of the biggest animals around in the Late Triassic (~210 million years ago), measuring at least 9m long (~30′) and weighing around 1.7 tonnes (1.9 US tons), but despite its size it seems to have still been bipedal.

Due to the highly disarticulated nature of the bones the fossil site may have been a “bone accumulation area”, a place where dismembered bits and pieces of different carcasses were regularly carried to be eaten by a predator or scavenger  – essentially a trash heap, fittingly enough. A couple of “rauisuchian” teeth have actually been found among the remains, which might indicate what was chomping on these particular Kholumolumo.

It Came From The Wastebasket #20: Colossally Convoluted Condylarths

“Insectivora” was a wastebasket taxon so bad it had to be revised multiple times, but there’s another particularly infamous case in mammal taxonomy that’s still in the process of being resolved – the “condylarths.

This group was first created in the early 1880s, during the Bone Wars, and initially was just a subgroup of odd-toed ungulates containing only the phenacodontids. But just a few years later Condylarthra was promoted up to its own order, and groups like the periptychids and hyopsodontids were added in too.

Then over the next few daceds century various groups were added and removed from the condylarths, most notably with the mesonychids and arctocyonids being brought in from their previous position with the creodonts.

By the mid-20th century the condylarths had become a big convenient dumping ground for any and all “primitive” ungulate-like mammals that didn’t easily fit into any modern groups, ranging in age from the early Paleocene through to the early Oligocene. But it soon became apparent that they had the same problem as the “insectivores” – there weren’t really any unique anatomical features that united all these animals together.

They generally had rounded-cusped molar teeth and hoof-like toes, but they also had rather generalized “primitive mammal” features and a diverse range of ecologies. Some were small herbivores, but others were coati-like or dog-like omnivores, and some were even bear-sized carnivores.

An illustration showing five different "condylarths". On the top row is Hyopsodus, a small guinea-pig-like animal with a long horse-like head; then Meniscotherium, a slightly larger animal that somewhat resembles a capybara; then the much larger Arctocyon, which has a slightly bear-like body, hoofed towes, and a dog-like head. On the bottom row is Ectoconus, a small animal with a tapir-like body and a blunt rectangular snout; then Mesonyx, a much larger dog-like animal with hoofed toes and a long tail.
From left to right, top row: Hyopsodus lepidus (hyopsodontid), Meniscotherium chamense (phenacodontid), Arctocyon primaevus (“arctocyonid”).
Bottom row: Ectoconus ditrigonus (periptychid), Mesonyx obtusidens (mesonychid)

It wasn’t even clear how the various different condylarth groups were actually related to each other. The best guess was that arctocyonids had arisen from within the “insectivores”, with a Protungulatum-like form as the common ancestor of all the other condylarths. Where exactly modern ungulates had then evolved from within the condylarths was also still uncertain.

Cladistic analysis in the 1980s began to tackle the confusing pile of assorted condylarths, and showed that they weren’t the single ancestral source of all modern ungulates, but instead a loose collection of several unrelated groups from all over the ungulate evolutionary tree. Arctocyonids, periptychids, and hyopsodontids were placed as early “primitive” lineages, phenacodontids were loosely linked with the ancestors of odd-toed ungulates once again, and mesonychids were considered to be the ancestors of whales.

An image of a diagram from a 1994 academic paper, showing the proposed evolutionary relationships of various "condylarths" with main ungulate groups. It differs majorly from modern understanding by its inclusion of elephants, sirenians, hyraxes, and their extinct relatives, along with showing whales as descending from mesonychids instead of artiodactyls.
…And if you know modern mammal phylogeny you’ll probably see some big problems here. 🐘
(Image source: https://doi.org/10.1017/S2475263000001343)

And, once again paralleling the mess of the “insectivores”, it wasn’t until genetic methods became available in the late 1990s that larger-scale ungulate relationships began to be properly resolved. The paenungulates (elephants, hyraxes, and sirenians), which had been traditionally considered to be a major branch of ungulates, were removed entirely and reclassified as afrotheres. And, along with some new fossil discoveries, whales were recognized as having actually evolved from within the even-toed ungulates instead of from mesonychids.

This shake-up threw the still-problematic “condylarth” classifications back into question – with some “condylarths” turning out to also be afrotheres instead of true ungulates.

Today the actual relationships of the main “condylarth” ungulate families are still in the process of being figured out, and there’s a lot of remaining uncertainty and disagreement about them.

Phenacodontids seem to have mostly maintained their traditional position as early odd-toed ungulates, and hyopsodontids may potentially be part of this group too – possibly as members of the hippomorph lineage, closely related to horses and brontotheres. Arctocyonids might be a wastebasket themselves, with some studies finding them to be a mix of several different archaic ungulate lineages. Periptychids may have links to the even-toed ungulates. The mesonychids, meanwhile, are now generally considered to be a separate order from the traditional “condylarths”, and may be either an early branch of the even-toed ungulates or much more basal ungulates closely related to the “arctocyonids”.

Since the term “condylarth” no longer has any real taxonomic meaning some paleontologists have proposed replacing it with “archaic ungulate” to distance from the historical messiness of the old name. But this hasn’t really caught on, and many papers still use “condylarth” in a very loose sense to refer to an “evolutionary grade” of early ungulates of unclear evolutionary affinities.

A cladogram showing the modern classification of several different "condylarth" families. They're shown as potentially occupying positions throughout the branches of the even-toed and odd-toed ungulates.

And while that’s the last main entry for this month, we’re not quite done yet. There’s still one weekday left in October, and after digging through so many taxonomic garbage cans there’s only one place we can go now.

…See you in the trash heap.

It Came From The Wastebasket #19: The Pterrible Fate Of Ptychopariida

The Ptychopariida were some of the earliest known trilobites, first appearing in the early Cambrian about 521 million years ago and surviving until the end of the Ordovician about 444 million years ago. They included some of the most numerous and common trilobite species, and were probably ancestral to multiple other major lineages – including the very last trilobites at the end of the Permian – making them incredibly important in understanding the overall evolution of trilobites as a whole.

…But this group is also one of the biggest wastebaskets in paleontology.

First established in the early 20th century, the ptychopariids seemed to have some fairly good defining characteristics based on their facial sutures, large thoraxes, and relatively small pygidia. But the group quickly became a dumping ground for a massive amount of Cambrian trilobites, eventually containing numerous different families, hundreds of genera, and many more individual species.

Actually figuring out their internal evolutionary relationships also turned out to be extremely difficult – so much so that some paleontologists working on them just gave up trying and arranged the genera names alphabetically instead!

Even cladistic studies from the 1970s onward struggled to make sense of these highly “problematic” trilobites, and any larger-scale analysis was a daunting task due to how huge and diverse the ptychopariid wastebasket had become over the years. Worse, some of the anatomical features the group had been based around were starting to look more like the result of a lot of convergent evolution across multiple lineages than any actual shared ancestry.

Efforts were still made at breaking up the mess, however, with better-understood sub-groups like the Proetida, Harpida, Asaphida, Trinucleida, and Olenida being gradually split off into their own separate orders over the course of the last few decades.

An illustration of Ptychoparia, an extinct trilobite from the Cambrian period. It has a large semicircular head with a pair of antennae, small eyes, and a bulbous "forehead" region. Its body has 13 segements, and its "tail" is small and shaped like a blunted triangle.
Ptychoparia striata

But even by the early 2010s what remained of the Ptychopariida was still paraphyletic at best, more of an “evolutionary grade” of early trilobites than a single lineage, with most of its constituent families also rather poorly defined. There was even a proposal to abandon the group entirely, stating that “it serves no scientific purpose” and that its orphaned contents should be considered “order uncertain” until their actual relationships can be untangled.

Today the “ptychopariids” are in dire need of a full revision – since they were the ancestors of many other major groups they’re still crucial for understanding early trilobite evolution. There may be a salvageable single lineage somewhere in the remains of this wastebasket, even if it’s restricted to just close relatives of the genus Ptychoparia, but until somebody tackles them properly they’re stuck in taxonomic limbo with their name only being used in a loose sense.

It Came From The Wastebasket #18: Lots And Lots of Lepidotes

Lepidotes was a ray-finned fish that lived during the Mesozoic, found in both freshwater and shallow marine environments. It was a member of the ginglymodian fish lineage, related to modern gars, and along with distinctive thick enamelled scales on its body it was also one of the earliest types of fish able to protrude its jaws for suction feeding.

First discovered in Jurassic-aged fossil deposits in Europe in the 1830s, this genus was quickly turned into a notorious wastebasket taxon for any similar-looking fossil fish. Over time dozens of different Lepidotes species were named, many of them rather dubious, from locations all around the world and spanning a time period of over 100 million years.

An illustration of Lepidotes gigas, an extinct fish related to modern gars. It has a somewhat carp-like shape, with a body profile resembling an elongated oval, a relatively large head region, small fins, and a forked tail. Its scales are rhombus-shaped and are arranged in tightly-packed rows along its body.
Lepidotes gigas

But despite Lepidotes being a wastebasket for almost two centuries, it wasn’t until surprisingly recently that any real progress began to be made on cleaning it all up.

In the early 2010s a large-scale review of ginglymodian relationships found that many “Lepidotes” species were either invalid or polyphyletic, belonging in completely different genera or families. True Lepidotes were restricted down to just the original type species Lepidotes gigas and a few of its closest relatives, all from the early Jurassic of Europe, while some other forms were moved into the newer genera Scheenstia and Callipurbeckia. Since then some other “Lepidotes” have also been reclassified, creating new names like Macrosemimimus, Occitanichthys, and Quasimodichthys.

There’s still work needing to be done on untangling all these Lepidotes-like fish – Scheenstia might actually now represent several different lineages, for example – but at least Lepidotes itself is now in a much better situation than it was just a couple of decades ago.

It Came From The Wastebasket #17: Getting Ornithomimus In Order

The ostrich-like “bird-mimic” dinosaur Ornithomimus was named in 1890, based on some hand and foot bones from Late Cretaceous-aged fossil beds in Colorado, USA.

The first ornithomimid known to science, it was initially thought to be a ornithopod, but then a few years later more fossil material revealed it was actually a theropod – and then it spent some time classified as a “megalosaur” before ornithomimids were finally recognized as being coelurosaurs in the early 20th century.

And for nearly a century after its discovery it was treated as a wastebasket taxon for any similar-looking fossil material from North America and Asia, with around 17 different species named within the genus. One of these was split off into Struthiomimus in 1917, but it wasn’t until much later that the rest began to get sorted out.

A review of known Ornithomimus fossils in the early 1970s renamed a couple more species into the new genera Archaeornithomimus and Dromiceiomimus, and dismissed most of the remaining species as dubious or invalid. Just two valid species now remained: the original Ornithomimus velox from Colorado, and Ornithomimus edmontonicus from Alberta, Canada.

An illustration of Ornithomimus, an extinct feathered dinosaur. It has a a small beaked head atop a long slender neck, two wing-like arms with three clawed fingers, long ostrich-like legs, and a counterbalancing tail with longer feathers towards the tip.
Ornithomimus edmontonicus

Since then opinions have gone back and forth about some of the other Ornithomimus species. For a while Dromiceiomimus was merged back into Ornithomimus, but more recently it’s been found to have distinct limb proportions and was probably actually a separate genus after all. Another species that’s usually considered to be part of Struthiomimus is also sometimes instead classified as an Ornithomimus instead.

Really all of the North American ornithomimids are in need of a modern taxonomic revision – especially since Ornithomimus edmontonicus shows enough anatomical variation that it might actually represent a species complex of multiple very similar forms, which might get split apart in the future if anyone can figure out how to reliably distinguish them.

It Came From The Wastebasket #16: Catopsalis Catastrophe

The rodent-like multituberculates were a major lineage of mammals that were only distantly related to modern marsupials and placentals. They originated around the time of the mid-Jurassic (~168 million years ago), survived through the end-Cretaceous mass extinction, and went on to become one of the most diverse and successful types of mammal in the Paleocene. After that point they began to decline, and after anw over-130-million-year-long run they went extinct* in the early Oligocene (~33 million years ago).

(* Except, possibly, in South America, where an enigmatic fossil known as Patagonia peregrina may represent a multi surviving as recently as about 18 million years ago in the early Miocene.)

First discovered in North America in the 1880s, Catopsalis foliatus was part of a group of multituberculates called taeniolabidoids. These multis got significantly larger than the rest of their kind – averaging beaver-sized but with some species getting up to at least capybara-sized – and were some of the first mammals to evolve into relatively big herbivores after the extinction of the non-avian dinosaurs.

An illustration of Catopsalis, an extinct multituberculate mammal. It resembles a rodent, with a whiskery nose, large eyes, small rounded ears, short clawed legs with spurs on its ankles, and a long tufted tail. Its colored mostly brown with pale spotted markings along its sides.
Catopsalis foliatus

Catopsalis was named based on a partial jawbone and a few teeth, and over the next century or so various other similar-looking fossils from both North America and Asia were added into the genus as additional species. Eventually Catopsalis contained eight different species, ranging over about 10 million years from the late Cretaceous to the early Eocene – not especially big compared to some other wastebaskets we’ve looked at this month, but it was still a problem, muddying up attempts to understand the actual evolutionary relationships and biogeography of the taeniolabidoids.

Cladistic studies in the 1980s showed that Catopsalis was paraphyletic, made up of at least five separate lineages, and a few of them were subsequently renamed and reclassified. The Cretaceous Asian forms became Djadochtatherium and Catopsbaatar, and are now considered to be part of a different lineage of multis known as djadochtatherioids, while one of the remaining North American species then became Valenopsalis.

…But a couple of other new Catopsalis species have also been named in the meantime (one as recently as 2018), so there are still seven different species that need sorting out in this particular wastebasket.