Rhacheosaurus

Metriorhynchids were a group of fully marine crocodyliforms known from the mid-Jurassic to the early Cretaceous of Europe and the Americas. They were the most aquatic-adapted of all known archosaurs, with streamlined bodies, smooth scaleless skin, small front flippers, larger hind flippers, and shark-like tail flukes. They may also have been endothermic, and might even have given live birth at sea rather than laying eggs.

Rhacheosaurus gracilis here was a metriorhynchid that lived in warm shallow waters around what is now Germany during the late Jurassic, about 150 million years ago. Around 1.5m long (~5′), its long narrow snout lined with delicate pointed teeth suggests it fed on small soft-bodied prey, a niche partitioning specialization that allowed it to coexist with several other metriorhynchid species in the same habitat.

Unlike most other marine reptiles metriorhynchids didn’t have particularly retracted nostrils, which may have had a limiting effect on their efficiency as sustained swimmers since higher-set nostrils make it much easier to breathe without having to lift the whole head above the surface. The lack of such an adaptation in this group may be due to their ancestors having a single nasal opening formed entirely within the premaxilla bones at the tip of the snout, uniquely limiting how far it could easily shift backwards – other marine reptiles had nostrils bound by the edges of multiple different bones, giving them much more flexibility to move the openings around.

(By the early Cretaceous a close relative of Rhacheosaurus did actually evolve nostrils bound by both the premaxilla and the maxilla, and appeared to have started more significant retraction, but unfortunately this only happened shortly before the group’s extinction.)

Metriorhynchids also had well-developed salt glands in front of their eyes, but the large sinuses that accommodated these glands may have made their skulls ill-suited to deep diving, being more susceptible to serious damage from pressure changes and restricting their swimming to near-surface waters only.

Preserved skin impressions in some metriorhynchid fossils show several unusual “irregularities”, including curl shapes, small bumps, and cratering. It’s unknown what exactly caused these marks, but they may represent scarring from external parasites such as lampreys and barnacles.

Continue reading “Rhacheosaurus”

Spectember/Spectober 2023 #08: Various Filter-Feeders

Admantus asked for a “freshwater baleen whale”:

A shaded sketch of a speculative freshwater baleen whale. It has a very wide duck-like snout with whisker-like bristles, short baleen inside its mouth, very small reduced eyes, and broad paddle-like flippers.

Rostrorutellum admantusi is descended from small cetotheres that became isolated in a large inland body of water (similar to the modern Caspian Sea), eventually becoming landlocked and gradually reducing in salinity towards fully freshwater.

Highly dwarfed in size, just 2-3m long (~6’6″-9’10”), they’re slow swimmers with broad duck-like snouts that are used to scoop up mouthfuls of sediment and strain out their invertebrate prey in a similar feeding style to gray whales.

Due to the murkiness of the water, and the lack of large predators in their environment, they have poor eyesight and instead use sensory bristles and electroreceptors around their snouts to navigate and detect prey.


And an anonymous submission requested a “whale-like filter-feeding marine crocodile”:

A shaded sketch of a speculative filter-feeding crocodile. It has spatula-like jaws lined with many delicate closely-spaced needle-like teeth, flipper-like limbs, and a long paddle-like tail.

Sestrosuchus aigialus is a 6m long (~20′) crocodilian closely related to the modern American crocodile, living in warm shallow coastal waters.

It’s adapted for an almost fully aquatic lifestyle convergently similar to the ancient thalattosuchians, swimming with undulations of its long tail and steering with flipper-like limbs. But unlike other crocs it’s specialized for filter-feeding, with numerous delicate needle-like teeth in its jaws that interlock to sieve out small fish and planktonic invertebrates from the water.


A couple more suggestions also asked for “fully aquatic pinnipeds” and “future crabeater seal evolution”:

A shaded sketch of a speculative filter-feeding fully aquatic crabeater seal. It has four wing-like flippers, a streamlined body, and elongated jaws with many lobed teeth used to sieve krill.

Euphausiolethrus volucer is a fully aquatic descendant of the crabeater seal. About 5m long (~16’4″), it occupies the ecological niche of a small baleen whale in the krill-abundant Antarctic waters that lack most actual baleen whales.

Its jaws contain numerous finely-lobed teeth that are used to strain krill from the water, and it utilizes all four of its wing-like flippers to swim in an “underwater flight” motion similar to that of plesiosaurs.

Highly social, it tends to congregate in pods that cooperate to herd swarms of krill for easier feeding.

Spectember 2023 #06: Some Big Reptiles

An anonymous request asked for a “large ankylosaur-like herbivorous notosuchian“:

A shaded sketch of a speculative ankylosaur-like animal related to modern crocodilians. It has a chunky body covered in interlocking armor plates, with a row of spikes down each side of its body and a longer pair of upward-pointing spikes on the bulbous tip of its tail. It has four squat legs, also armored, with hoof-like claws, and a short wide snout with large forward-facing nostrils.

Mitafosuchus pachysomatus is descended from Simosuchus-like notosuchians in Madagascar that survived through the K-T extinction.

Highly convergent with the now-extinct ankylosaurs, it’s a 5m long (~16’4″) squat tank-like herbivore with hoof-like claws, and a wide short snout used for grazing on low vegetation. Heavy interlocking osteoderm amor covers most of its body, protecting it against the big carnivorous crocodyliformes that also still survive in this version of Cenozoic Madagascar.


Another anon wanted to see a “giant warm blooded lizard”:

A shaded sketch of a speculative giant lizard descended from tegu. It has a small head with a slender snout, a crest on its head and a small pair of horns behind its eyes. Its neck is long and thick with a hanging fleshy dewlap, a chunky body with a sloping back, four legs in a semi-upright stance, and a long thick tail.

Atopohippus zestamenus is a descendant of invasive Argentine giant tegu lizards that became established on an island archipelago. At 2m tall (~6’6″) and around 6m long (~20′) it’s an example of island gigantism, and occupies a high-browsing-herbivore ecological niche similar to giant tortoises and prosauropods.

Its ancestors’ seasonal endothermy has become full endothermy in this species, partly due to young individuals having a very rapid growth rate and metabolism – their main defense against the predators on their island home (primarily carnivorous tegu-descendants and large birds of prey) is to simply get to a big body size as fast as they possibly can.

It Came From The Wastebasket #15: Rauisuchian Revolution

Pseudosuchians, or “croc-line archosaurs”, are one of the two major lineages of archosaur reptiles, alongside the avemetatarsalians (pterosaurs and dinosaurs). Although today they’re represented only by crocodilians, they were especially successful and diverse back in the Triassic – and it was only after a mass extinction took out most of them that the dinosaurs were able to rise to prominence for the rest of the Mesozoic Era.

A grouping of pseudosuchians traditionally known as “rauisuchians” had upright limbs in a distinctive “pillar-erect” hip arrangement. Many of these croc-relatives were large quadrupedal predators, but others developed bipedal theropod-like postures, with some so remarkably convergent that they were initially misidentified as ornithomimosaurs.

The first rauisuchians were discovered in the 1930s, represented only by fragmentary remains, and while they were initially recognized as being pseudosuchians their exact evolutionary relationships within that group were poorly understood for a long time. Over the next several decades they were classified with aetosaurs (early armored pseudosuchians), then ornithosuchids (even earlier pseudosuchians), and then erythrosuchids (not even pseudosuchians but an earlier type of archosauriform).

More complete fossil discoveries and better cladistic analysis methods in the 1980s led to them being classified as being very closely related to crocodylomorphs, with three main lineages recognized: the prestosuchids, the rauisuchids, and the poposauroids.

An illustration of three different "rauisuchians", extinct relatives of modern crocodiles. At the top is Prestosuchus, a quadrupedal reptile with a boxy theropod-dinosaur-like head, platigrade bear-like legs, and a long tapering tail. It's colored yellow-brown with lighter underbelly and cat-like darker spots-and-stripes. In the middle of Postosuchus, a bipedal reptile that convergently resembles a tyrannosaur, with a boxy head, small arms, plantigrade legs, and a long counterbalancing tail. it's colored brown on top and white underneath, with irregular splotches of black and white across its body. At the bottom is Effigia, a bipedal reptile that convergently resembles a featherless ornithomimosaur, with a beaked bird-like head, a long neck, small arms, bird-like legs, and a counterbalancing tail. It's dark-colored with faint reddish and yellowish stripes and a paler underside.
The “prestosuchid” Prestosuchus chiniquensis, the rauisuchid Postosuchus kirkpatricki, & the poposauroid Effigia okeeffeae (not to scale)

But even by the end of the 20th century “Rauisuchia” had never actually gotten a formal definition, and it had very much become a wastebasket taxon for a variety of paracrocodylomorph pseudosuchians that didn’t easily fit into any other major lineages.

In the 2000s renewed interest in rauisuchians’ anatomy and evolutionary relationships led to increasing recognition that they weren’t even a single defined group, with various species instead falling into different points along an “evolutionary grade“. The poposauroids and rauisuchids still seem to be distinct lineages, but the “prestosuchids” were found to be polyphyletic, with some forming a grade between the other two “rauisuchid” groups and others turning out to not even be paracrocodylomorphs.

A cladogram showing the classification of poposauroids, Prestosuchus, and rauisuchids within the group Pseudosuchia. They're shown as three separate lineages branching off between aetosaurs and the ancestors of modern crocodilians. A bracket marking indicates that all three traditionally used to be classified as "rauisuchians".

And although the taxonomic concept of “Rauisuchia” as a distinct group has now been abandoned, the term “rauisuchians” does still remain in common use as an informal name for these animals – probably because it’s much more concise than saying “non-crocodylomorph paracrocodylomorphs”.

Eons Roundup 12 (& Published Art!)

It’s been a while since I last showed off some of these, but here’s some more commission work I’ve done for PBS Eons:

The metriorhynchid marine crocodilians Aggiosaurus and Cricosaurus, from “When Crocs Thrived in the Seas”
https://www.youtube.com/watch?v=vgqs_9BBX10

And… what’s this?

A familiar Scutellosaurus makes an appearance in a recently-published children’s dinosaur book!

Eons Roundup 8

Once again it’s a PBS Eons commission roundup day!

An unnamed Cerro Ballena rorqual whale and the long-necked seal Acrophoca, from “How the Andes Mountains Might Have Killed a Bunch of Whales”
https://www.youtube.com/watch?v=iNk6r5WljGc


The poposauroid pseudosuchians Shuvosaurus (life restoration) and Effigia (skeletal) from “When Dinosaur Look-Alikes Ruled the Earth”
https://www.youtube.com/watch?v=QsmV34Co32c

Ceratosuchus

“Horns” seem to have convergently evolved multiple times in crocodiles over the last few million years, including in a couple of living species. These triangular crests are formed from the squamosal bone, just above their ears, and tend to be a sexually dimorphic feature used in territorial displays between males, serving to make them look bigger when they arch their necks.

But there’s another horned crocodilian known from much earlier in the Cenozoic – and this one was an alligator!

Ceratosuchus burdoshi lived in Colorado and Wyoming in the western United States during the late Paleocene and early Eocene, about 57-56 million years ago. It was a fairly small alligator, around 1.7m long (5’6″), with a broad snout featuring sharp teeth at the front and blunter teeth further back – an arrangement that suggests it was a generalist predator eating a variety of small prey, using those teeth to first grab and then crush whatever it managed to catch.

It also had large blade-like osteoderm armor on the back of its neck, which may have been arranged in line with its “horns” to make its visual displays look even spikier.

Eons Roundup 7

It’s another PBS Eons commission roundup day!

The metatherian mammals Pucadelphysand Khasia, and lineart of the sparassodont Paraborhyaena, from “How South America Made the Marsupials”
https://www.youtube.com/watch?v=l5doyrUWFbE


The dyrosaurid crocodyliform Acherontisuchus and the bothremydid turtle Puentemys, from “How a Hot Planet Created the World’s Biggest Snake”
https://www.youtube.com/watch?v=T-hDNbM-WLk


The early penguin Waimanu and the giant penguin Anthropornis, from “When Penguins Went From The Sky To The Sea”
https://www.youtube.com/watch?v=HMArjGQwLvY

Weird Heads Month #28: Pig-Nosed Tanks

There’s already been quite a few Triassic weirdos in this series, so it’s probably not much of a surprise that we’ve got one more before the end of the month.

Desmatosuchus spurensis here was part of a group called aetosaurs, a lineage of heavily-armored herbivorous archosaurs which convergently resembled the later ankylosaurs but were more closely related to modern crocodilians.

Living in the Southwestern and South Central United States during the late Triassic, about 221-210 million years ago, Desmatosuchus measured around 4.5m long (14’9″) and was covered in thick interlocking bony osteoderms that protected its back, sides, belly, and tail, with longer spines over its neck and shoulders.

It had a triangular skull with a few blunt teeth at the back of its jaws and a toothless snout at the front. Its pointed lower jaw probably had a keratinous beak, while its upper jaw had an odd upturned flared tip. What exactly was going on with that snoot is uncertain, but it may have anchored a shovel-shaped upper keratinous beak – or, since there was a little bit of flexibility between its snout bones, possibly even a pig-like nose!

It probably mostly ate soft vegetation, using its shovel-like snout to dig up roots and tubers, although similarities with the skulls of modern armadillos suggest it may also have fed on insect grubs.

Weird Heads Month #22: Flat Headed Crocs

The heads of modern crocodilians are already pretty amazing, with their high-set eyes and nostrils, moveable ear flaps, numerous dermal pressure receptors, and a distinctive chaotic “scaly” surface texture that’s actually formed from cracks in thick stiff skin.

And back during the Late Cretaceous of West Africa, about 95 million years ago, there was a huge variety of odd-looking crocdyliformes all sharing a river delta environment and specializing in different ecological niches from terrestrial to aquatic. There were species with nicknames like “duck croc“, “boar croc“, and “pancake croc” – but one of the most intriguing of them all was Aegisuchus witmeri, the “shieldcroc”.

Known only from the back end of its skull, Aegisuchus seems to have had a very wide and flat head, possibly similar in shape to those of the “pancake crocs” which it may have been closely related to. From the sheer size of the known remains it must have been rather big, with a skull at least 2m long (6’6″) and a total length of around 10m (32’10”).

But its weirdest feature was a raised circular bony boss in the middle of its forehead. Unlike any other known croc, the bone around this area shows evidence of deep blood vessel channels, suggesting it was anchoring a more extensive keratinous “shield”. Much like the “horns” seen on some crocodilian species this was probably used for territorial and mating displays, but its extensive blood supply may have also allowed it to play a role in body temperature regulation.

Aegisuchus would have had a fairly weak bite, and may have fed more like a pelican than a modern croc, snapping up fish and other small animals with its gaping mouth. Its jaw mechanics also resembled those of the Triassic amphibian Gerrothorax’s “toilet seat head”, so it could have had a similar hunting strategy, laying motionless on riverbeds with its mouth wide open, waiting for prey to swim close enough to catch.