Phiomicetus

Named after the canine-headed Ancient Egyptian god, Phiomicetus anubis is the first fossil cetacean to discovered, described, and named entirely by a team of Arab paleontologists.

Living during the mid-Eocene, about 43 million years ago, in a shallow sea-covered region that is now part of Egypt‘s Western Desert, Phiomicetus was an early protocetid – an amphibious foot-powered swimmer, at a transitional point in the evolution of whales from deer-like terrestrial animals to fully aquatic screaming torpedoes.

About 3m long (~10′), it had large jaw muscles and sharp teeth with wear patterns that suggest it was a raptorial hunter grabbing and snapping at prey with powerful bites. It would have probably tackled fairly big prey compared to other protocetids, hunting things like large fish, turtles, and even smaller whales in an ecological role similar to that of modern orcas.

Along with the distantly-related long-snouted Rayanistes it’s one of the earliest known whales from Africa, giving us further glimpses at a time period when early cetaceans were first dispersing out from the South Asian subcontinent via the ancient Tethys Sea.

Heliosus

Just before the 2017 solar eclipse, some unusual fossils were discovered in Southern Wyoming, USA.

Consisting of a partial jawbone and a humerus, and dating to the mid-Eocene (~47 million years ago), the remains clearly belonged to an early even-toed ungulate – but one much bigger than the rabbit-sized herbivores known from that time. This was something closer in size and build to a large modern pig, standing at least 1m tall at the shoulder (3’3″).

It turned out to belong to a member of a somewhat obscure lineage known as the helohyids, a group whose evolutionary relationships are a bit uncertain but are generally considered to be part of the whale-and-hippo lineage. These pig-like animals were large opportunistic omnivores, possibly occupying a similar ecological role to the later entelodonts, with some Late Eocene forms reaching sizes comparable to black bears.

This new helohyid was named Heliosus apophis, inspired by the eclipse, with its genus name meaning “sun pig”, and its species name referencing a sun-devouring Ancient Egyptian deity.

It was one of the earliest known large-bodied members of the group, and shows that these animals must have increased in size very rapidly during their early evolution, going from rabbit-sized to pig-sized within just a couple of million years.

Borealodon

Modern mysticete whales all have baleen plates in their mouths, but before the evolution of these specialized filter-feeding structures the early members of their lineage still had toothy jaws.

Borealodon osedax here was one of those “toothed mysticetes”, living about 30-28 million years ago during the mid-Oligocene off the coast of Washington state, USA.

Unlike modern baleen whales it was small, about the size of a modern porpoise at around 2m long (6’6″), and the wear on its multi-cusped teeth suggest it was a predator taking slicing bites of fish – possibly using suction-assisted feeding like its close relatives the aetiocetids.

Its fossilized remains are also a rare example of an ancient whale fall, with characteristic bore holes in its bones from Osedax worms.

Aegicetus

The protocetids were some of the first oceanic cetaceans, occupying a transitional position in the evolution of whales, with four paddle-like limbs and nostrils only partway up their snouts.

Early members of this group swam like otters, using a combination of undulating their bodies and paddling with large hind limbs, but somewhere in the Late Eocene they switched over to propelling themselves entirely with their tails and gave rise to even more whale-like forms like the basilosaurids.

And Aegicetus gehennae was right in the middle of that switch.

Discovered in the Wadi Al-Hitan (“Valley of the Whales”) fossil site in Egypt, Aegicetus lived around 37-35 million years ago. It was similarly-sized to earlier protocetids like Georgiacetus, measuring about 3.5m long (11’6″), but its hind limbs were proportionally smaller. Its hips were also completely disconnected from its vertebrae, giving it much more flexibility to undulate its body and tail – and preventing it from supporting its weight on land, suggesting that it spent its entire life in the water.

It wasn’t a direct ancestor to more “advanced” cetaceans, since it lived alongside several species of basilosaurids. Instead it seems to represent a late-surviving example of what the earlier protocetid-basilosaurid transitional forms would have looked like.

Eons Roundup 8

Once again it’s a PBS Eons commission roundup day!

An unnamed Cerro Ballena rorqual whale and the long-necked seal Acrophoca, from “How the Andes Mountains Might Have Killed a Bunch of Whales”
https://www.youtube.com/watch?v=iNk6r5WljGc


The poposauroid pseudosuchians Shuvosaurus (life restoration) and Effigia (skeletal) from “When Dinosaur Look-Alikes Ruled the Earth”
https://www.youtube.com/watch?v=QsmV34Co32c

Ensidelphis

Last week’s weird-snouted Furcacetus wasn’t the only recently-discovered ancient platanistoid dolphin that deserves some attention.

Ensidelphis riveroi was described in the same paper, and also lived in the coastal waters around Peru during the early Miocene, about 19 million years ago. It was a little less closely related to its modern river-dwelling cousins than Furcacetus, and was slightly larger, estimated to have measured about 3m long (9’10”).

But what made it weird was its incredibly long snout, lined with around 256 tiny sharp teeth, which also curved markedly to the right side along its 55cm (1’10”) length.

Expectation vs reality

With only one known skull of Ensidelphis it’s impossible to tell if this was a natural condition for the species or if it was some sort of anomalous individual. It doesn’t seem to be a deformation of the fossil, at least.

Similar unusual right-side bending has been seen in the skulls of a few individuals of modern South Asian river dolphins, franciscanas, and Amazon river dolphins, possibly caused by injuries at a young age being exaggerated as the animals grew. However, many other platanistoid dolphins (especially squalodelphinids) are known to have naturally had similar bends in their snouts – but always to the opposite side, curving to the left instead of the right.

But naturally bent or not, what might Ensidelphis have been doing with that incredibly lengthy snoot?

Its long slender jaws would have had a fairly weak bite, so it probably wasn’t able to catch large prey, and it had a very flexible neck. Possibly it swam along near the seafloor using its snout to probe and sweep around in the sediment for buried small prey.

Modern South Asian river dolphins swim along on their sides while doing this – almost always on their right sides, interestingly enough – and if Ensidelphis did the same sort of thing then a snout bent in that direction might have been an advantage.

Furcacetus

The two living subspecies of the South Asian river dolphin are the last surviving members of a lineage known as the Platanistoidea, an early evolutionary branch of the toothed whales. This group was once much more diverse and widespread than their modern representatives, found in oceanic habitats around the world from the Oligocene to the mid-Miocene.

Many of them had forward-pointing protruding teeth at the tips of their snouts, resembling those of some plesiosaurs or pterosaurs, suggesting they were a convergent adaptation used for snagging hold of slippery soft-bodied aquatic prey.

Furcacetus flexirostrum is one the newest additions to this group, named and described in late March 2020. It lived in Pacific coastal waters around Peru during the early Miocene, about 19-18 million years ago, and was about the same size as modern South Asian river dolphins at around 2.3m long (7’7″).

And it had a uniquely-shaped snout for a cetacean, curving upwards for most of its length but then turning downwards right at the tip, which along with large forward-pointing teeth gave its jaws a vaguely crocodilian appearance.

A closeup view of the jaws of Furcacetus.

Much like slender-snouted crocodilians and spinosaurids, this arrangement would have allowed Furcacetus to make quick bites at small-fast-moving prey like fish and crustaceans.

Weird Heads Month #27: The Weirdest Wildebeest

Earlier in this series we saw some ruminants with bizarre-looking headgear, but there was another species in that group that evolved a completely different type of strange head.

Rusingoryx atopocranion was a close relative of modern wildebeest that lived during the late Pleistocene, around 100,000 to 50,000 years ago. Its fossil remains are known from the Kenyan part of Lake Victoria, on Rusinga Island – an area which wasn’t actually an island at the time due to lower lake levels, and was instead part of a hot dry grassland environment.

Standing about 1.2m at the shoulder (~4′), it had an oddly-shaped skull with a pointed snout and a highly domed forehead. But this wasn’t the thick bony dome of a headbutting animal – this structure was narrow and fairly fragile, and had looping nasal passages running through it.

Instead it was something never before seen in any mammal: a bony nasal crest convergently similar to those of hadrosaurid dinosaurs.

Juveniles had less developed crests, developing them as they matured, and one skull that may represent an adult female also has a smaller crest, suggesting that this feature was sexually dimorphic.

Based on just the anatomy of the nasal passages Rusingoryx may have honked at a frequency similar to a vuvuzela, but the added length of its vocal tract could have lowered this pitch even further, closer to infrasound ranges – so more like a tuba! Such low frequencies can travel very long distances and are also below the hearing range of many carnivores, and would have effectively allowed Rusingoryx to shout at each other in “stealth mode”.

Weird Heads Month #19: Sword-Snouted Whales

Cetaceans are just weird animals in general. Fully aquatic mammals best described as “fat screaming torpedoes“, with bizarre head anatomy and their nostrils pulled up to the top of their heads behind their eyes. Some of them are among the largest animals to ever exist, some of them can live to over 200 years old, and some can dive to incredible depths below the ocean surface.

And they’re all descended from tiny deer-like creatures, with their closest living relatives being hippos and other even-toed ungulates.

Some ancient cetaceans were particularly odd-looking, evolving walrus-like tusks or elongated chins – or in the case of Eurhinodelphis longirostris here, an incredibly long swordfish-like snout.

Living during the mid to late Miocene, about 14-7 million years ago, Eurhinodelphis ranged across the Mediterranean and the North Atlantic, with fossil remains known from Western Europe, Turkey, and the East Coast of the United States. It was a fairly small dolphin-like cetacean about 2m long (6’6″), and was part of a lineage of early toothed whales called eurhinodelphinids.

Its upper jaw was around five times longer than the rest of its skull, and toothless past the point where the lower jaw ended. Much like the modern billfish it resembled, it probably used its snout to slash at fast-moving fish, stunning them and making them easier to catch.

Weird Heads Month #09: Butterfly Faces

The nose-forks and head-crests we saw last time weren’t the only unusual headgear in ancient ruminants.

The giraffoids are represented today by just pronghorns, giraffes, and okapi, but in the past they were much more diverse, modifying their prongs and ossicones into multiple sets of horns, or into deer-like and moose-like antler shapes.  

And Prolibytherium was probably the most striking of the lot.

Two different species have been identified, with Prolibytherium magnieri here living in North Africa during the early-to-mid Miocene, about 17-16 million years ago. Its exact evolutionary relationships are uncertain but it was probably part of a group called climacoceratids, deer-like giraffoids which often had thorny branching ossicones that resembled antlers.

It stood around 1.2m tall at the shoulder (~4′), and exhibited dramatic sexual dimorphism – females had slender forked horn-like ossicones, while those of the males flared out into large wide flat shapes that resembled butterfly wings.

Heavy reinforcement in the bones of the back of the males’ skulls helped to support all the extra weight of those huge ossicones, and if they actually used the structures to fight with each other then this may have also provided some protection or shock absorption.