Paucipodia

Lobopodians were some of the earliest known panarthropods, closely related to velvet worms, tardigrades, and the ancestors of all the true arthropods. They were small soft-bodied worm-like animals with multiple pairs of fleshy legs, and some species also bore elaborate spikes, armor plates, and fleshy bumps all over their bodies – with the spiny Hallucigenia being the most famous example.

But unlike its more charismatic relative Paucipodia inermis here didn’t seem to have any ornamentation at all.

Known from the Chinese Chengjiang fossil deposits, dating to about 518 million years ago, Paucipodia lived in what was then a shallow tropical sea. Its 13cm long (~5″) tubular body had nine pairs of legs, with each foot tipped with a pair of hooked claws, and the inside of its mouth was ringed with tiny sharp teeth.

Several specimens have been found preserved in association with the weird gummy-disc animal Eldonia, which may indicate Paucipodia either preyed on them or scavenged on their carcasses.

Some Paucipodia fossils also have enigmatic tiny “cup-like” organisms attached to their legs. It’s currently unknown what exactly these were, or whether they were parasitic in nature or simply opportunistically “hitching a ride” similar to the Inquicus found on armored palaeoscolecid worms in the same fossil beds.

Noripterus

Noripterus complicidens was a pterosaur that lived in what is now Mongolia and northwest China during the early Cretaceous, about 140 million years ago.

It had a wingspan of up to 4m (~13′), with a head-and-body length of around 1.2m (~4′), and like other dsungaripterids it had a distinctively reinforced skull, with a toothless beak at the front of its jaws and strong widely-spaced teeth further back – an arrangement that was probably used to catch and then powerfully crack open hard-shelled prey.

Unlike other pterosaurs, however, Noripterus also had some very unusual feet.

All other known pterosaurs seem to have had plantigrade hindlimbs, standing and walking with the whole foot on the ground. But Noripterus had toe joints that looked more like those of theropod dinosaurs than other pterosaurs, with a higher level of upward flexibility and potentially a more digitigrade posture standing on just its toes.

With dsungaripterids already having fairly stout body proportions that suggest they spent a lot of time walking around on the ground, Noripterus may have been even more agile and adept at terrestrial locomotion. Digitigrady is generally more efficient for moving at higher speeds, so this pterosaur might have been a runner behaving similarly to modern ground birds, preferring to sprint away from threats on foot rather than launch itself into the air.

Tropidosuchus

Proterochampsids were a group of Triassic archosauriformes, closely related to the true archosaurs (crocodilians, pterosaurs, and dinosaurs/birds).

Known only from South America between about 242 and 205 million years ago, these reptiles’ heads were wide at the back but very narrow along the snout, often with prominent bony bumps and ridges on their skulls, and they had less osteoderm armor on their bodies than other archosauriformes.

They’ve traditionally been interpreted as very crocodile-like and semi-aquatic, but their long slender limbs and presence in rather arid paleoenvironments suggest they may have been more terrestrial fast-running predators.

Tropidosuchus romeri here lived about 235 million years ago in what is now Argentina. It was one of the smaller proterochampsids, only about 50cm long (1’8″), with just a single row of osteoderms along its back, and had larger and lower-set eyes compared to its relatives.

CT scans of its braincase indicate it had a particularly good sense of smell, and it may have relied mainly on scent to locate prey.

Antaecetus

Antaecetus aithai was an early whale that lived during the late Eocene (~40 million years ago) in what is now Morocco, at a time when northern Africa was covered by a warm shallow sea.

It was part of the “basilosaurids“, some of the first fully aquatic cetaceans – traditionally considered to be a single defined group, but more recently found to be more of an “evolutionary grade” of multiple early whale lineages – and much like Basilosaurus it had elongated back vertebrae that would have given it a very long slender body shape.

Antaecetus also had a proportionally smaller head and smaller teeth than other basilosaurids, along with much denser bones and a stiffer spine that would have made it a rather slow swimmer with reduced maneuverability. It was also fairly small overall compared to most of its relatives, probably around 6m long (~20′).

It was probably a slow-moving coastal water animal somewhat like modern sirenians – except unlike manatees and dugongs it was carnivorous. Its relatively delicate teeth suggest it was feeding on soft-bodied prey like cephalodpods, and with its lack of speed it must have been some sort of ambush predator, waiting around for potential prey to come within striking range.

Unnuakomys

Towards the end of the Cretaceous, about 69 million years ago, the most diverse and numerous mammals in the northern hemisphere were the metatherians, close relatives of modern marsupials.

And Unnuakomys hutchisoni was the most northern-living of all these metatherians.

About the size of a modern mouse, around 10-15cm long (4-6″), and with teeth that suggest it was a shrew-like insectivore, this little metatherian lived in northern Alaska in what’s known as the Paaŋaqtat Province – a region with a distinctive population of endemic polar animals. At the time this area was located at an even higher latitude than it is today, around 80-85ºN, but due to a greenhouse climate it was also warmer, with no permanent ice and the average temperatures staying above freezing.

Unnuakomys was by far the most common mammal species in the Paaŋaqtat Province, represented by numerous fossil teeth and a few jaw fragments, and it also seems to have been the only metatherian living in the whole region. This may just be a preservation bias in the fossil record, but it might also indicate that Unnuakomys was uniquely specialized to endure the several months of continuous darkness each winter in its polar woodland environment, while other North American metatherians were restricted to more southerly latitudes.

Cabarzia

Cabarzia trostheidei here lived during the early Permian in what is now Germany, about 295 million years ago.

Despite its very lizard-like appearance it was actually part of the varanopid lineage, a group of scaly amniotes traditionally classified as early synapsids (distant relatives of modern mammals), but which more recently have been proposed to instead be sauropsid reptiles closer related to early diapsids.

It was around 50cm long (1’8″), and its short arms, long legs, slender body, and long tail suggest it was capable of shifting into a bipedal posture when running at high speeds, similarly to some modern lizards – probably mainly to escape from larger predators, but possibly also used to pursue fast-moving prey like flying insects.

And whether varanopids were actually synapsids or sauropsids, this makes Cabarzia the earliest known example of an animal running on two legs.

Natovenator

Halszkaraptorines were a group of small dromaeosaurids known only from the Late Cretaceous of Mongolia. They were odd little raptors with flattened snouts, long necks, and flipper-like arms – features that suggest they were specialized for swimming, making them the second known lineage of semi-aquatic non-avian dinosaurs after the spinosaurids.

This “duck-raptor” interpretation has been a little controversial since it was first proposed in 2017, but we’ve just gotten some more evidence for it in the form of an entirely new halszkaraptorine.

Natovenator polydontus lived in what is now the Gobi Desert in southern Mongolia, around 72 million years ago. The size of a small duck, about 45cm long (18″), it had jaws full of many needle-like teeth, a long flexible goose-like neck, and a streamlined body with a wide flattened ribcage convergently shaped like those of modern diving birds.

Although it had long strong legs, these don’t show much in the way of aquatic specializations and would have been used more for walking and running on land. Instead it may have used its flipper-like arms to propel itself through the water, like modern penguins or auks.

It probably had a lifestyle similar to modern mergansers, swimming and diving in lakes and rivers, and preying on fish, amphibians, and aquatic invertebrates.

Serrasalmimus

The pycnodonts were a diverse group of ray-finned fish that were found in shallow coastal waters from the late Triassic to the late Eocene (~215-37 million years ago). They usually had deep but very narrow body shapes with a disc-like appearance, convergently similar to modern reef fish like marine angelfish or butterflyfish – but some looked much weirder, with elaborate horns and spines, long snouts, or vertically-stretched bodies.

Most of them also had jaws full of round flat teeth used to crush hard-shelled prey, but some may instead have been herbivorous grazers similar to parrotfish.

And a couple of lineages even became carnivores.

Serrasalmimus secans lived in what is now Morocco during the late Paleocene, about 59 million years ago. Although only known from its jaws, the size of the fossil material suggests it was fairly large for a pycnodont, possibly around 80cm long (~2’8″).

It had sharp flesh-cutting teeth similar to those of modern piranha, but with a surprising evolutionary twist. Unlike any other known ray-finned fish, Serrasalmimus‘ teeth were true shearing carnassials anchored into bony sockets, with new replacement teeth forming directly below each current tooth – a very specific arrangement of features previously only known in mammals.

This is an especially remarkable example of convergent evolution because on land placental carnivorans were developing their own carnassials at the same time, just a few million years after the K-Pg mass extinction. Both mammals and pycnodonts were simultaneously taking advantage of the vacant predatory roles in their respective ecosystems, and ended up with incredibly similar tooth adaptations as a result.

Platycepsion

Platycepsion wilksoni was a temnospondyl amphibian that lived during the early-to-mid Triassic (~251-242 million years ago) in what is now New South Wales, Australia.

A single partial skeleton discovered in the 1880s is the only known record of this species, and represents a juvenile that would have been around 15-20cm long (6-8″). We don’t know exactly what it would have looked like as an adult, but it was probably quite similar to other closely-related members of the brachyopid family – mostly-aquatic salamander-like animals with short but wide toothy jaws, eyes set towards the front of the head, small limbs, and paddle-like tails.

A recent re-analysis of the Platycepsion specimen found evidence of soft-tissue preservation of external gills, showing that it wasn’t just a juvenile but a true larva, a sort of temnospondyl “tadpole”.

Distinct larval stages have been found in a few other types of temnospondyls, but this is the first definite example from the stereospondyls, a major Mesozoic lineage that survived all the way into the Early Cretaceous.

Gaylordia

Gliding has convergently evolved multiple times within mammals, from the Jurassic-aged haramiyids and volaticotheres to numerous species of modern marsupials, rodents, and colugos.

And yet despite the huge diversity of gliding mammals, and their particular prevalence in tropical forests, there’s an entire continent famous for its rainforests that’s somehow completely lacking any modern examples: South America.

It’s not clear why the gliding lifestyle never took off in South America, but the continent is surprisingly devoid of any other gliding vertebrates, too. The only exceptions are a few species of flying frogs in the northwestern tropical forests around Colombia.

But back in the early Eocene, about 53-50 million years ago, there was at least one South American gliding mammal. Some fossil limb bones found in the Itaboraí Formation in southeastern Brazil look very much like those of a gliding mammal – long and thin, with a locking elbow joint, knees adapted for jumping, and flexible ankles typical of tree-climbers.

These remains haven’t been given a new scientific name, however, because there’s a good chance they belong to an already-described species. Fossils from Itaboraí are found disarticulated, broken, and with bones of multiple different species jumbled together, so most fossil mammals named from the site have been based on their more easily distinguishable teeth and jaw fragments.

The problem is matching those teeth with these bones.

Currently the best identity guess based on size is Gaylordia macrocynodonta. This mammal would have been around 30cm long (1′), about the size of a modern rat, and had distinctive large canine teeth. It used to be classified as a marsupial related to opossums, but more recent studies have found it to have actually been a marsupialiform metatherian instead, much more closely related to Pucadelphys and sparassodonts than to any modern true marsupials.

Gaylordia‘s crushing molars suggest it was carnivorous, able to crunch through bones or hard-shelled invertebrate prey. This would be a very unusual diet for a gliding mammal, since most other mammalian gliders are herbivores or omnivores – the only other known predatory examples were the volaticotheres over 110 million years earlier.